Formal Methods with Uncertainty

and other things.

Statistical Monitoring

- Markov Chains (CAV 2023)
- *Hidden MC (RV 2023)*
- Linear Systems (FAccT 2023)

Planning

- Abstraction-based Planning (CAV 2024 - under submission)

Statistical Monitoring

- Markov Chains (CAV 2023)
- *Hidden MC (RV 2023)*
- Linear Systems (FAccT 2023)

Planning

- Abstraction-based Planning (CAV 2024 - under submission)

Statistical Monitoring

- Markov Chains (CAV 2023)
- *Hidden MC (RV 2023)*
- Linear Systems (FAccT 2023)

- Planning under Statistical Uncertainty (ongoing)

Planning

- Abstraction-based Planning (CAV 2024 - under submission)

Statistical Monitoring

- Markov Chains (CAV 2023)
- *Hidden MC (RV 2023)*
- Linear Systems (FAccT 2023)

Verification

- Statistical verification of Neural-Certificates (ongoing)

- Planning under Statistical Uncertainty (ongoing)

Planning

- Abstraction-based Planning (CAV 2024 - under submission)

Statistical Monitoring

- Markov Chains (CAV 2023)
- *Hidden MC (RV 2023)*
- Linear Systems (FAccT 2023)

Verification

- Statistical verification of Neural-Certificates (ongoing)

- Planning under Statistical Uncertainty (ongoing)

Neural Networks

Planning

- Abstraction-based Planning (CAV 2024 - under submission)

Statistical Monitoring

- Markov Chains (CAV 2023)
- *Hidden MC (RV 2023)*
- Linear Systems (FAccT 2023)

Verification

- Statistical verification of Neural-Certificates (ongoing)

- Planning under Statistical Uncertainty (ongoing)

OOD

- Novelty Detection
 (RV 2021 -> IJSTT 2023)
- Output-based (Rotation Project)

Neural Networks

Quantify Uncertainty...

```
... for online monitoring;
... for planning;
... for verification.
```

Possible Directions.

At first glance.

Use statistical monitoring to quantify and reduce the uncertainty in the world model.

Improve safety in planning by quantifying state and/or model uncertainty.

Investigate out-of-distribution detection (OOD) in a sequential setting.

Statistical Monitoring...

... of Stochastic Systems.

$$\overrightarrow{X} := \left(X_t\right)_{t>0}$$

a stochastic process

$$f: \Sigma^* \to \mathbb{R}$$

some function

t e N+

at any point in time

$$\vec{x}_t := x_1, \dots, x_t$$

observe a realisation

$$E(f(\overrightarrow{X}_t) \mid \overrightarrow{x}_I)$$

want to compute

Limited information.

Estimate and quantify Uncertainty.

$$\underline{\mathbb{E}(f(\overrightarrow{X}) \mid \overrightarrow{x}_{l})} \in \mathcal{A}(\overrightarrow{x}_{t}) \text{ with probability } 1 - \delta$$

$$\overrightarrow{X} \qquad x_{t+3} x_{t+2} x_{t+1} \qquad x_{t} x_{t-1} x_{t-2} \dots$$

$$[l, u]$$

Example.

Bound uncertainty in parts of the world model, e.g. position of AV.

 \overrightarrow{X} ... sequence of sensor measurements f ... sensor measurements to position

$$\mathbb{E}(f(X_t) \mid \vec{x}_{t-1})$$

Actual position at time t

$$f(X_t)$$

$$\hat{f}(\overrightarrow{X}_t)$$

Find an ε such that ...

With probability $(1 - \delta)$

With probability δ

$$\hat{f}(\overline{X}_t)$$

$$\hat{f}(\overline{X}_2)$$
 •

$$\hat{f}(\overline{X}_1)$$
 •

More Data...

...more certainty.

System

MCs

Property

$$\mathbb{P}(r|q)$$

System

some POMCs

Property

$$\mathbb{E}(f(X_{t:t+n}))$$

System
$$\mathbb{E}(X_{t+1} \mid \vec{x}_t) = \mathbb{E}(X_t \mid \vec{x}_{t-1}) + \Delta(x_t)$$

$$\mathbb{E}(f(X_t) \mid \vec{x}_{t-1})$$

Possible Direction.

Use statistical monitoring to quantify and reduce the uncertainty in the world model.

Efficient Planing...

...in Stochastic Systems.

$$\overrightarrow{X} := \left(X_t\right)_{t>0}$$

$$O_1, A_1, O_2, A_2, O_3, A_3, \dots O_n, A_n$$

Environment

$$O_1, A_1, O_2, A_2, O_3, A_3, \dots O_n, A_n$$

Agent $O_{1}, A_{1}, O_{2}, A_{2}, O_{3}, A_{3}, \dots O_{n}, A_{n}$

$$[O_1], A_1, O_2, A_2, O_3, A_3, \dots O_n, A_n$$

$$[O_1, A_1], O_2, A_2, O_3, A_3, \dots O_n, A_n$$

$$[O_1, A_1, O_2], A_2, O_3, A_3, \dots O_n, A_n$$

$$\gamma(\overrightarrow{X}_{t-1}, O_t) = A_t$$

policy

$$\max_{\gamma} \mathbb{E}_{\gamma}(\text{reward}(\overrightarrow{X}_n))$$

s.t.
$$\mathbb{P}_{\gamma}(\cos(\overline{X}_n)) = 1$$

Example.

Process starvation.

O_t ... world model

 A_t ... allocation of one unit of computation

$$O_1, A_1, O_2, A_2, O_3, A_3, \dots O_n, A_n$$

Sensor | Localisation | Perception | Planning and Control

Ot ... world model

 A_t ... allocation of one unit of computation

Objective: Maximise utility

Utility $O_1, A_1, O_2, A_2, O_3, A_3, \dots O_n, A_n$

O_t ... world model

 A_t ... allocation of one unit of computation

Objective: Maximise utility

Constraint: Prevent Starvation

$$O_1, A_1, O_2, A_2, O_3, A_3, \dots O_n, A_n$$

Sensor | Localisation | Perception | Planning and Control

Sensor Localisation Perception Planning and Control

$$\frac{1}{5} \sum_{t=1}^{5} \mathbf{1}[A_t = S]$$

$$\frac{1}{5} \sum_{t=1}^{5} \mathbf{1}[A_t = L]$$

$$\frac{1}{5} \sum_{t=1}^{5} \mathbf{1}[A_t = S] \qquad \frac{1}{5} \sum_{t=1}^{5} \mathbf{1}[A_t = L] \qquad \frac{1}{5} \sum_{t=1}^{5} \mathbf{1}[A_t = P] \qquad \frac{1}{5} \sum_{t=1}^{5} \mathbf{1}[A_t = C]$$

$$\frac{1}{5}\sum_{t=1}^{5}\mathbf{1}[A_t=C]$$

Sensor | Localisation | Perception | Planning and Control

$$\frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = S]$$

$$\frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = L]$$

$$\frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = P]$$

$$\frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = S] \qquad \frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = L] \qquad \frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = P] \qquad \frac{1}{k} \sum_{t=1}^{k} \mathbf{1}[A_t = C]$$

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = S]$$

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = L]$$

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = P]$$

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = S] \qquad \frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = L] \qquad \frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = P] \qquad \frac{1}{n} \sum_{t=1}^{n} \mathbf{1}[A_t = C]$$

Problem.

Exponential in time horizon.

Abstraction.

Sometimes <u>different</u> futures look the <u>same</u>.

Future Projects

Two ongoing projects.

Uncertain Planning.

Combine statistical monitoring with efficient planning.

Neural-Certificates...

... and how to statistically verify them.

System

Agent

System

Certificate Agent System

Lyapunov Function

Controler

Dynamic System Super-Martingale

Neural Network Dynamic Stochastic System

Neural Certificate Neural Network Dynamic Stochastic System

Neural Certificate Neural Network Dynamic Stochastic System

Is the neural certificate a proof of safety for the neural controller in the stochastic system? Neural Certificate Neural Network Dynamic Stochastic System

How can we verify this statistically without knowing the system?

Possible Direction.

Improve safety in planning by quantifying state and/or model uncertainty.

Just Estimates Velocity Frame Processing Rate Position Zhuyi Deceleration

Carry uncertainty through the computation.

Carry uncertainty through the computation.

Novelty Detection.

Single sample.

Monitor Friendly.

Encourage Closeness.

Out-of-specification Detection.

On Batches.

$$X_i \longrightarrow \begin{bmatrix} \text{Neural} \\ \text{Network} \end{bmatrix} \longrightarrow (Z_i^1, ..., Z_i^m)$$

$$X_i \longrightarrow \underbrace{\begin{array}{c} \text{Neural} \\ \text{Network} \end{array}} \longrightarrow \underbrace{(Z_i^1, ..., Z_i^m)}_{Soft-max}$$

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \longrightarrow \begin{pmatrix} \text{Neural} \\ \text{Network} \end{pmatrix} \qquad \begin{pmatrix} (Z_1^1, \dots, Z_1^m) \\ \vdots \\ (Z_n^1, \dots, Z_n^m) \end{pmatrix}$$

Calibration

$$\begin{pmatrix}
(Z_1^1, \dots, Z_1^m) \\
\vdots \\
(Z_n^1, \dots, Z_n^m)
\end{pmatrix} \xrightarrow{\text{sort}(\tau(\cdot))} \begin{pmatrix}
V_1 \\
\vdots \\
V_n
\end{pmatrix}$$

$$F$$
 V_1
 V_n

$$\begin{pmatrix} \bar{X}_1 \\ \vdots \\ \bar{X}_k \end{pmatrix} \longrightarrow \begin{pmatrix} \text{Neural Network} \\ \text{Network} \end{pmatrix} \begin{pmatrix} (\bar{Z}_1^1, \dots, \bar{Z}_1^m) \\ \vdots \\ (\bar{Z}_k^1, \dots, \bar{Z}_k^m) \end{pmatrix}$$

Runtime

$$F$$
 V_1
 V_k

$$KS(F(V), F(\bar{V})) \leq \theta_{\alpha}$$

Kolmogorov-Smirnov

Tuneable Performance.

Due to control over KS error.

Possible Direction.

Investigate out-of-distribution detection (OOD) in a sequential setting.

$$x_{t+3} \ x_{t+2} \ x_{t+1} = \begin{bmatrix} \text{OOD} \\ \text{Test} \end{bmatrix} x_t \ x_{t-1} \ x_{t-2} \ \dots$$
 $\{0,1\}$

Sequential Hypothesis Testing

Sequential Hypothesis Testing

inflate false positive rate+ information

Summary.

Time to revise.

Quantify Uncertainty...

```
... for online monitoring;
... for planning;
... for verification.
```

Possible Directions.

At first glance.

Use statistical monitoring to quantify and reduce the uncertainty in the world model.

Improve safety in planning by quantifying state and/or model uncertainty.

Investigate out-of-distribution detection in a sequential setting.