## Statistical Verification

of Probabilistic Termination Proofs



## Motivation.

Termination of a stochastic process.

$$X := (\mathcal{X}, d)$$

$$\mathcal{X} \subset \mathbb{R}^2$$











$$\overrightarrow{X} := (X_t)_{t \in \mathbb{N}} \sim (P, x_0)$$

Markov process

 $\forall x \in \mathcal{X}: Y \sim xP$ 

Markov transition kernel

## Question:

Does it reach a target region from every initial state?











# How to prove this?

Ranking super-martingales!

$$\overrightarrow{M} := (M_t)_{t \in \mathbb{N}}$$

Stochastic process

 $\forall t \in \mathbb{N}$ :

 $M_t \geq K \in \mathbb{R}$ 

Lower bounded

$$\forall t \in \mathbb{N}:$$
 
$$\mathbb{E}(M_{t+1} \mid \overrightarrow{M}_t) \leq M_t - \varepsilon$$

Decreases in expectation

#### Goal

Find a function  $f: \mathcal{X} \to \mathbb{R}$  such that

$$f(\overrightarrow{X}) := (f(X_t))_{t \in \mathbb{N}}$$

is a ranking super-martingale on  $\mathcal{X} \backslash \mathcal{T}.$ 

## Intuition:

With every step the process gets closer to the target in expectation.

## One approach:

Counterexample-guided inductive synthesis.









## Statistical Verification.

What do we gain? What do we loose?

Known Lipschitz Constant + Known Neural Network Bounded + Sample Access Known Lipschitz Constant + **Known Dynamics** Sample Access Yes/ Probabilistic Guarantee Sure Guarantee

## Statistical Verification.

Checking the super-martingale condition.

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

$$\underline{\qquad}$$
Sustem

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

$$Certificate$$

A problem instance is the tuple

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

System Lipschitz constant

A problem instance is the tuple

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

Certificate Lipschitz constant

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

$$Certificate \ range$$

$$c_f := \sup f - \inf f$$

### Problem Instance:

A problem instance is the tuple

$$\mathcal{F} := (P, f, \gamma_P, \gamma_f, c_f, \delta)$$

$$Confidence$$

$$\delta \in (0, 1)$$

### Problem Statement:

Given a problem instance  $\mathcal{I}$  find an <u>algorithm  $\mathcal{A}$ </u> with knowledge of  $(\gamma_P, \gamma_f, c_f, \delta)$  and sample access of (P, f), s.t.

$$\mathscr{A}(\delta) \iff \forall x \in \mathscr{X} \setminus \mathscr{T} \colon \mathbb{E}_{Y \sim xP}(f(Y)) \leq f(x) - \varepsilon$$

with probability  $1 - \delta$  upon termination.

### Problem Reduction:

How to approach this?

$$\forall x \in \mathcal{X} \setminus \mathcal{T} \colon \mathbb{E}_{x}(f(Y)) \leq f(x) - \varepsilon$$

$$\forall x \in \mathcal{X} \setminus \mathcal{T} \colon \mathbb{E}_{x}(f(Y)) \leq f(x) - \varepsilon$$

$$\iff \forall x \in \mathcal{X} \setminus \mathcal{T} : \mathbb{E}_{x}(f(Y)) - f(x) + \varepsilon \leq 0$$

$$R_{x}$$

$$\forall x \in \mathcal{X} \setminus \mathcal{T} \colon \mathbb{E}_{x}(f(Y)) \leq f(x) - \varepsilon$$

$$\iff \forall x \in \mathcal{X} \setminus \mathcal{T} \colon \mathbb{E}_{x}(f(Y)) - f(x) + \varepsilon \leq 0$$

$$\iff \sup_{x \in \mathcal{X} \setminus \mathcal{T}} R_x \le 0$$

### Actual Problem.

Find point with highest expected reward.

### Multi-Armed Bandits.

A small detour.



Reward distributions



Sub-Gaussian













Find highest expected reward

### Upper Confidence Bound.

Balance Exploration and Exploitation.

Sample history

$$\frac{1}{N_t^1} \sum_{s=1}^{N_t^1} X_s^1$$

$$X_1^1, X_2^1, X_3^1, \dots X_{N_t^1}^1$$

Compute average

$$\frac{1}{N_t^1} \sum_{s=1}^{N_t^1} X_s^1 \pm \sqrt{\frac{C(\sigma_1^2)\log(4t/\delta)}{N_t^1}}$$

$$X_1^1, X_2^1, X_3^1, \dots X_{N_t^1}^1$$

Account for uncertainty

$$\frac{\hat{R}_t^i}{N_t^i} \sum_{s=1}^{N_t^i} X_s^i \pm \sqrt{\frac{C(\sigma_t^2)\log(4t/\delta)}{N_t^i}}$$

Upper and lower confidence bound

$$\forall i \in [N]:$$

$$\mathbb{P}(\forall t \in \mathbb{N}: R_i \in \hat{R}_t^i \pm \mathbf{CS}_t^i) \geq 1 - \delta$$

Probability bound

# Algorithm.

Always choose the arm with the highest UCB.

# While True: $I_{t+1} \leftarrow \arg\max_{i \in [N]} (\hat{R}_t^i + CS_t^i)$ $X_{t+1}^{I_{t+1}} \sim A_{I_{t+1}}$

$$X_{t+1}^{I_{t+1}} \sim A_{I_{t+1}}$$















# Search Algorithm.

Check if:  $\forall i \in [N]: R_i \leq 0$ 

While True:

If 
$$0 < \hat{R}_t^{I_t} - CS_t^{I_t}$$
:

Return False

If  $0 \ge \hat{R}_t^{I_t} + CS_t^{I_t}$ :

Return True

 $I_{t+1} \leftarrow \arg\max_{i \in [N]} (\hat{R}_t^i + CS_t^i)$ 
 $X_{t+1}^{I_{t+1}} \sim A_{I_{t+1}}$ 



# Why?

Because with probability 
$$1 - \delta$$
:
$$R_{i^*} \leq \hat{R}_t^{i^*} + CS_t^{i^*} \leq \hat{R}_t^{I_t} + CS_t^{I_t}$$

$$and$$

$$\hat{R}_t^{I_t} - CS_t^{I_t} \leq R_{I_t}$$

# Lipschitz-Bandits

With adaptive Gridding.

#### Problem Statement:

Given a problem instance  $\mathcal{F}$  find an <u>algorithm  $\mathcal{A}$ </u> with knowledge of  $(\gamma_P, \gamma_f, c_f, \delta)$  and sample access of (P, f), s.t.

$$\mathcal{A}(\delta) \iff \sup_{x \in \mathcal{X} \setminus \mathcal{T}} R_x \le 0$$

with probability  $1 - \delta$  upon termination.





$$\forall t \in \mathbb{N} \forall i \in \mathcal{I}_t \colon Y \sim X_t^i P \colon$$
$$f(Y_t^i) - f(X_t^i) + \varepsilon$$

Observed Reward

| $\hat{R}_t^i \pm \mathbf{CS}_t^i$ |  |
|-----------------------------------|--|
|                                   |  |
|                                   |  |

| $\hat{R}^i_{\infty} \pm CS^i_{\infty}$ |  |
|----------------------------------------|--|
|                                        |  |
|                                        |  |

| $R_i$ |  |
|-------|--|
|       |  |
|       |  |

| $R_{x'}$ • $R_i$ • $R_x$ |  |
|--------------------------|--|
|                          |  |
|                          |  |

| $R_i \pm \gamma_P \gamma_f D_i$ |  |
|---------------------------------|--|
|                                 |  |
|                                 |  |

$$\hat{R}_{t}^{i} \pm \mathbf{C}\mathbf{S}_{t}^{i} + \gamma_{P}\gamma_{f}D_{i}$$

Lipschitz LCB & UCB

$$\sigma_i := c_f \quad DE_t^i$$

$$\hat{R}_t^i \pm CS_t^i + \gamma_P \gamma_f D_i$$

Lipschitz LCB & UCB

## Zoom into...

...questionable areas.

| $\approx 0$ |             |  |
|-------------|-------------|--|
|             | $\approx 0$ |  |
|             |             |  |
| ≪ 0         |             |  |

$$\hat{R}_t^i \pm CS_t^i + DE_t^i$$

Splitting

# Balance statistical and discretisation exploration.

Hopefully, reduce the number of grid cells while executing the MAB algorithm.

## Statistical Checker...

...for probabilistic termination proofs.

## Discussion.

Contributions, limitations, and improvements.

## Certificate Verification.

We noticed that this can be done using MAB. In the process we reduced the required assumptions.

Known Lipschitz Constant + Known Neural Network Bounded + Sample Access Known Lipschitz Constant + **Known Dynamics** Sample Access Yes/ Probabilistic Guarantee Sure Guarantee

## Lipschitz MAB.

Improved on existing works.

(Tentative)

 $4\sigma_i^2 \log(4t/\delta)$  $3.3\sigma_i^2(2\log\log N_t^i + \log(2/\delta))$ Linear w.r.t. the grid cells. Constant. Loop Logarithmic w.r.t. the grid cells. Linear w.r.t. the grid cells.



#### Limitations.

Requires relatively tight Lipschitz constants.

Runtime increases if reward is close to 0.

## Improvements.

Parallelisation: Search sub-spaces independently.
Soft-gridding: Use information from neighbouring grid cells.
Adaptive Bounds: Use empirical variance.
Local Lipschitz Constant: Compute or estimate.

## Related Works.

A bit of context.

## MAB Algorithm.

Kleinberg et.al. (2008): Zooming algorithm; Wang et.al. (2019): Adaptive gridding + bound; Jamieson et.al. (2014): Close Gap,  $\log t \rightarrow \log \log t$ ; Howard et.al. (2021): Predictable process,  $t \rightarrow N_t$ .

## Summary:

We developed a MAB based verification procedure to validate probabilistic termination proofs with high-probability and improved on existing MAB algorithms.