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Motivation.

2

Termination of a stochastic process.
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𝕏 := (𝒳, d)
𝒳 ⊂ ℝ2
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⃗X := (Xt)t∈ℕ ∼ (P, x0)

Markov process
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∀x ∈ 𝒳 : Y ∼ xP

Markov transition kernel



Question:
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Does it reach a target region 

from every initial state?
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𝒯
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How to prove this?

17

Ranking super-martingales!



18

⃗M := (Mt)t∈ℕ

Stochastic process
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∀t ∈ ℕ :
Mt ≥ K ∈ ℝ

Lower bounded
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Decreases in expectation


∀t ∈ ℕ :

𝔼(Mt+1 ∣ ⃗Mt) ≤ Mt − ε



Goal:

21

Find a function   such that 


 


is a ranking super-martingale on .

f : 𝒳 → ℝ
f( ⃗X ) := ( f(Xt))t∈ℕ

𝒳∖𝒯



Intuition:

22

With every step

the process gets closer to the target 


in expectation.




One approach:

23

Counterexample-guided inductive synthesis.
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Statistical Verification.

28

What do we gain?

What do we loose?
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Known Neural Networkf Known Lipschitz Constant +

Bounded + Sample Access: <

Known DynamicsP Known Lipschitz Constant +

Sample Access: <

Sure GuaranteeYes/
No Probabilistic Guarantee: >



Statistical Verification.

30

Checking the super-martingale condition.



Problem Instance:

31

A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)



Problem Instance:
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A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)

System



Problem Instance:
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A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)

Certificate



Problem Instance:
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A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)

System Lipschitz constant



Problem Instance:
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A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)

Certificate Lipschitz constant



Problem Instance:
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A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)

Certificate range

cf := sup f − inf f



Problem Instance:
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A problem instance is the tuple 

ℐ := (P, f, γP, γf, cf, δ)

Confidence

δ ∈ (0,1)



Problem Statement:

38

Given a problem instance  find an algorithm  

with knowledge of   and sample access of , s.t.




with probability  upon termination.

ℐ 𝒜
(γP, γf, cf, δ) (P, f )

𝒜(δ) ⟺ ∀x ∈ 𝒳∖𝒯 : 𝔼Y∼xP( f(Y)) ≤ f(x) − ε
1 − δ



Problem Reduction:

39

How to approach this?



40

∀x ∈ 𝒳∖𝒯 : 𝔼x( f(Y)) ≤ f(x) − ε
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⟺ ∀x ∈ 𝒳∖𝒯 : 𝔼x( f(Y)) − f(x) + ε ≤ 0

∀x ∈ 𝒳∖𝒯 : 𝔼x( f(Y)) ≤ f(x) − ε

Rx
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⟺ ∀x ∈ 𝒳∖𝒯 : 𝔼x( f(Y)) − f(x) + ε ≤ 0

∀x ∈ 𝒳∖𝒯 : 𝔼x( f(Y)) ≤ f(x) − ε

⟺ sup
x∈𝒳∖𝒯

Rx ≤ 0



Actual Problem.

43

Find point with highest expected reward.



Multi-Armed Bandits.

44

A small detour. 
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Upper Confidence Bound.
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Balance Exploration and Exploitation.
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Account for uncertainty
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Upper and lower 
confidence bound

1
Ni

t

Ni
t

∑
s=1

Xi
s ± C(σ2

i )log(4t/δ)
Ni

t

CSi
tR̂i

t



58

Probability bound


∀i ∈ [N] :
ℙ(∀t ∈ ℕ : Ri ∈ R̂i

t ± CSi
t) ≥ 1 − δ



Algorithm.
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Always choose the arm with the highest UCB.



60






While True :
It+1 ← arg max

i∈[N]
(R̂i

t + CSi
t)

XIt+1
t+1 ∼ AIt+1
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Search Algorithm.
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Check if: ∀i ∈ [N] : Ri ≤ 0
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While True :
If 0 < R̂It

t − CSIt
t :

Return False
If 0 ≥ R̂It

t + CSIt
t :

Return True
It+1 ← arg max

i∈[N]
(R̂i

t + CSi
t)

XIt+1
t+1 ∼ AIt+1
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Why?

71

Because with probability :

 


and


1 − δ
Ri* ≤ R̂i*

t + CSi*
t ≤ R̂It

t + CSIt
t

R̂It
t − CSIt

t ≤ RIt



Lipschitz-Bandits

72

With adaptive Gridding.



Problem Statement:

73

Given a problem instance  find an algorithm  

with knowledge of   and sample access of , s.t.




with probability  upon termination.

ℐ 𝒜
(γP, γf, cf, δ) (P, f )

𝒜(δ) ⟺ sup
x∈𝒳∖𝒯

Rx ≤ 0

1 − δ
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Observed Reward


∀t ∈ ℕ∀i ∈ ℐt : Y ∼ Xi
tP :

f(Yi
t) − f(Xi

t) + ε
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R̂i
t ± CSi

t
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R̂i
∞ ± CSi

∞
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Ri
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Ri

Rx

Rx′￼
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Ri ± γPγf Di

Di
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Lipschitz LCB & UCB


∀i ∈ ℐ∀t ∈ ℕ :
R̂i

t ± CSi
t + γPγf Di
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Lipschitz LCB & UCB

R̂i
t ± CSi

t + γPγf Di

DEi
tσi := cf



Zoom into…

85

…questionable areas.
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≈ 0

≈ 0

≪ 0
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Splitting

R̂i
t ± CSi

t + DEi
t
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Balance 
statistical and discretisation 

exploration.

93

Hopefully, reduce the number of grid cells 

while executing the MAB algorithm.



Statistical Checker…

94

…for probabilistic termination proofs.  



Discussion.

95

Contributions, limitations, 

and improvements.



Certificate Verification.

96

We noticed that this can be done using MAB.

In the process we reduced the required assumptions.
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Known Neural Networkf Known Lipschitz Constant +

Bounded + Sample Access: <

Known DynamicsP Known Lipschitz Constant +

Sample Access: <

Sure GuaranteeYes/
No Probabilistic Guarantee: >



Lipschitz MAB.

98

Improved on existing works.

(Tentative)
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4σ2
i log(4t/δ)

Ni
t

CS 3.3σ2
i (2 log log Ni

t + log(2/δ))
Ni

t: <

Linear w.r.t. the grid cells.CS

Comp. Constant.: <

Linear w.r.t. the grid cells.Loop Logarithmic w.r.t. the grid cells.: <
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Limitations.

101

Requires relatively tight Lipschitz constants.

Runtime increases if reward is close to .0



Improvements.

102

Parallelisation: Search sub-spaces independently.

Soft-gridding: Use information from neighbouring grid cells.


Adaptive Bounds: Use empirical variance. 

Local Lipschitz Constant: Compute or estimate.



Related Works.

103

A bit of context.



MAB Algorithm.

104

Kleinberg et.al. (2008): Zooming algorithm; 
Wang et.al. (2019): Adaptive gridding + bound;


Jamieson et.al. (2014): Close Gap, ;

Howard et.al. (2021): Predictable process, .

log t → log log t
t → Nt



Summary:

105

We developed a MAB based verification procedure 

to validate probabilistic termination proofs 


with high-probability 

and improved on existing MAB algorithms.


