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PAC-Learning  
& Monitoring

How machine learning could 

help runtime verification.



A high-level overview.
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Focus on problems, not results.



Formal Verification.
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Proving the correctness of a system.



Monitoring.
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Proving the correctness of a system 

on a particular run at runtime. 
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φ ⊆ Σω

𝒜 : Σ* → {0,1,?}

w ∈ Σω, u ≺ w :
𝒜(u) = 0 ⇒ w ∉ φ
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Monitor
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φ ⊆ Σω

𝒜 : Σ* → {0,1,?}

w ∈ Σω, u ≺ w :

𝒜(u) = 1 ⇒ w ∈ φ
𝒜(u) = 0 ⇒ w ∉ φ

Property

Monitor

a g b d b d a g b g . . . . . .



Monitorability.
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If every infinite string has a point, 

where the monitor can stop watching.



Fairness Properties
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From formal methods to machine learning.
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( □ ◊a → □ ◊g) ∧ ( □ ◊b → □ ◊g)bga g

Fairness in Formal Methods
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Memoryless & Probabilistic
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( □ ◊a → □ ◊g) ∧ ( □ ◊b → □ ◊g)bga g

ℙ(g ∣ a) > 0 ∧ ℙ(g ∣ b) > 0ag bg
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( □ ◊a → □ ◊g) ∧ ( □ ◊b → □ ◊g)bga g

ℙ(g ∣ a) > 0 ∧ ℙ(g ∣ b) > 0

ℙ(g ∣ a) − ℙ(g ∣ b)

ag bg

g a g b
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ℙ(g ∣ a) − ℙ(g ∣ b)g a g b

Fairness in Machine Learning



Monitorability.
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Can we estimate the property 

from observations?
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General Idea.
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We observe a Markov chain and at every time step 

the monitor provides PAC-style guarantees.
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ℳ a g b d b d a g b g . . . . . .
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ℳ a g b d b d a       g b g . . . . . .𝒜
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ℳ a g b d b d a       g b g . . . . . .𝒜

[x, y]
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ℳ a g b d b d a       g b g . . . . . .𝒜

1 − δ

[x, y]

ℙ(g ∣ a) − ℙ(g ∣ b) ∈ [x, y]g a g b with probability 



Problem Statement
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Let’s be slightly more general.
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Let ,   and  . Given a function  
 , find a monitor  such that:

M ∈ Δ(N − 1)N W ∼ (M, q0) U ≺ W
f : Δ(N − 1)N → ℝ 𝒜 : [N]* → ℝ2
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Let ,   and  . Given a function  
 , find a monitor  such that:

M ∈ Δ(N − 1)N W ∼ (M, q0) U ≺ W
f : Δ(N − 1)N → ℝ 𝒜 : [N]* → ℝ2

ℙ( f(M) ∈ 𝒜(U)) ≥ 1 − δ

(Obviously we want the bounds to be as tight as possible.)



Tradeoffs.
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We want to map the problem 

across four dimensions
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Class of Functions
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Class of Functions Resource Complexity
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Class of Functions Resource Complexity Time Complexity
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Class of Functions Resource Complexity Time Complexity Sample Complexity
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Class of Functions Resource Complexity Time Complexity Sample Complexity

How does the class of functions influence

the complexities, e.g. (in)dependent sums over M,

polynomials over M (and/or the eigenvector of M).
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Class of Functions Resource Complexity Time Complexity Sample Complexity

What is the minimal number of registers?

(w.r.t. time/sample complexity)
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Class of Functions Resource Complexity Time Complexity Sample Complexity

What is the minimal computation time?

(w.r.t. resource/sample complexity)
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Class of Functions Resource Complexity Time Complexity Sample Complexity

What is the rate at which the interval shrinks?

(w.r.t. resource/time complexity)




But wait, there is more.
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What if the system is more complex? 
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Remembers the last k-decisions.
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Remembers some arbitrary 

k-decisions.
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The policy changes at each time step, 

in a deterministic or probabilistic manner.
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The decisions are corrupted 

or partially hidden.
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And many more.
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From our perspective there is a lot we don’t know.

It seems closely related to the concentration of  


functions over random variables

with various dependencies.



What we did …
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… so far.



62

(Almost) arbitrary arithmetic expressions over 
transition probabilities of Markov chains. 
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(Almost) arbitrary arithmetic expressions over 
transition probabilities of Markov chains. 

Efficient computation of expectation of arbitrary 
polynomials over transition probabilities of 
Markov chains in a Bayesian setting using a 
Dirichlet prior. 
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(Almost) arbitrary arithmetic expressions over 
transition probabilities of Markov chains. 

Efficient computation of expectation of arbitrary 
polynomials over transition probabilities of 
Markov chains in a Bayesian setting using a 
Dirichlet prior. 

Weighted sums over transition probabilities of 
time-inhomogeneous Markov chains with linear 
and observed change in transition probabilities.



Is this interesting to you?
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Let us know!  (^_^)


