PAC-Learning & Monitoring

How machine learning could help runtime verification.

A high-level overview.

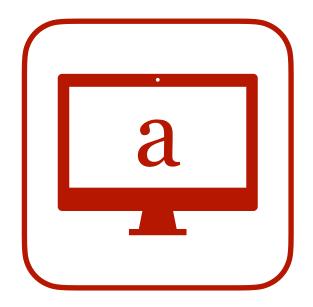
Focus on problems, not results.

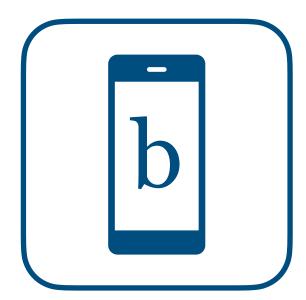
Formal Verification.

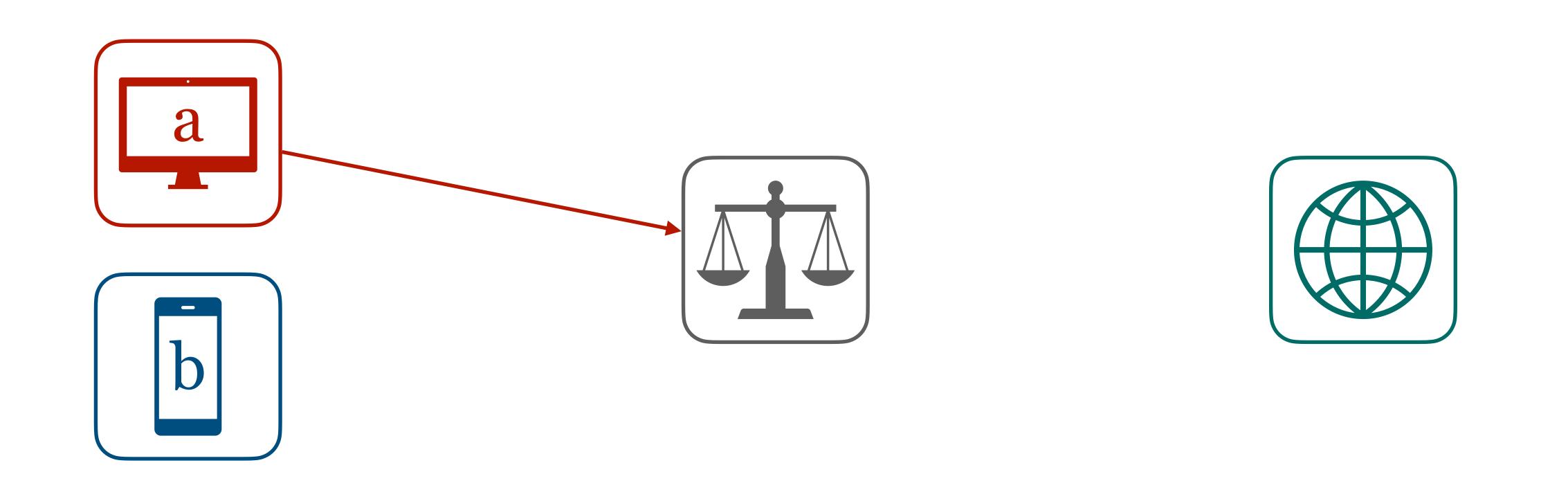
Proving the correctness of a system.

Monitoring.

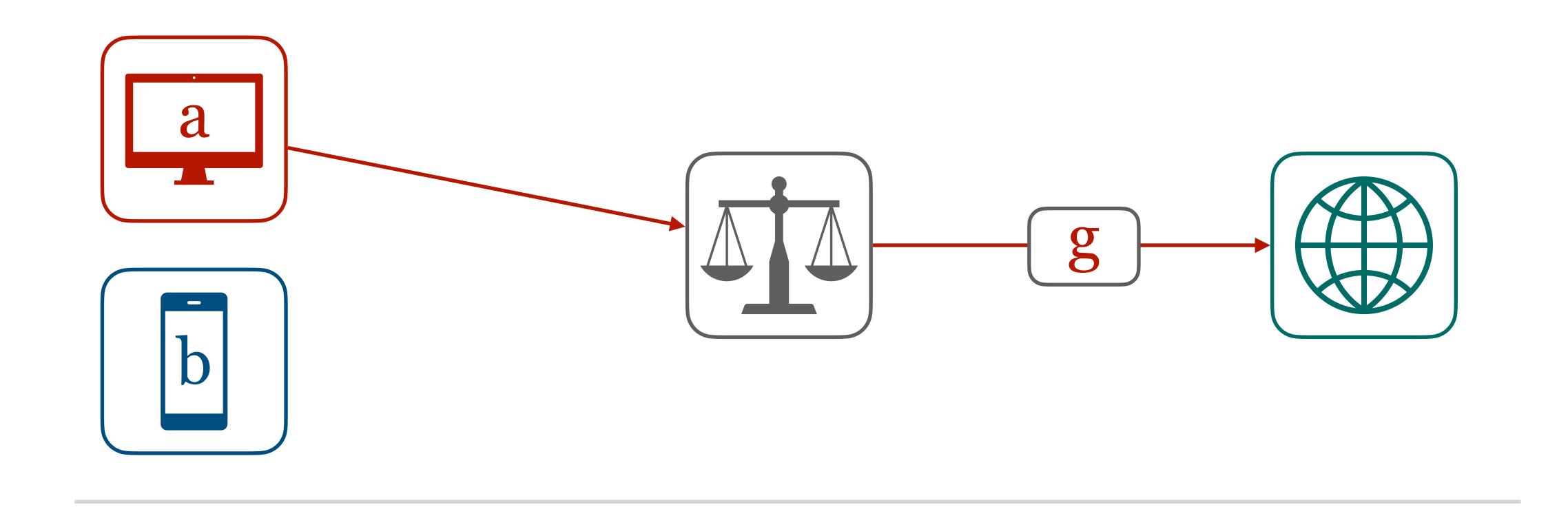
Proving the correctness of a system on a particular run at runtime.



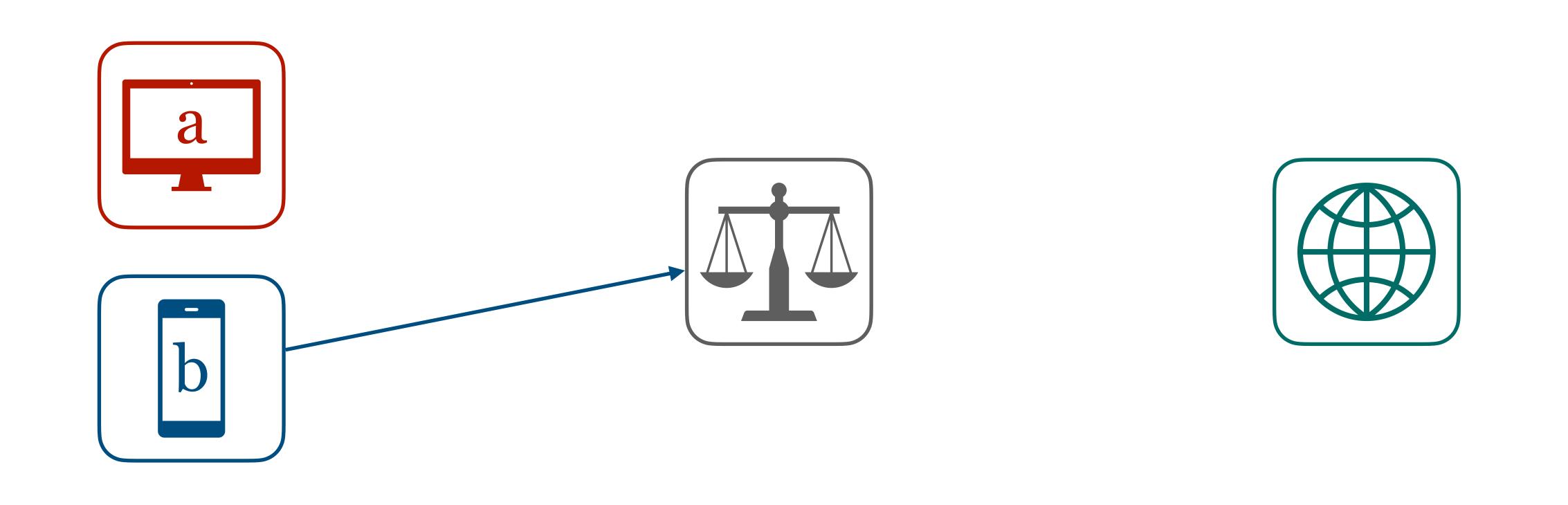




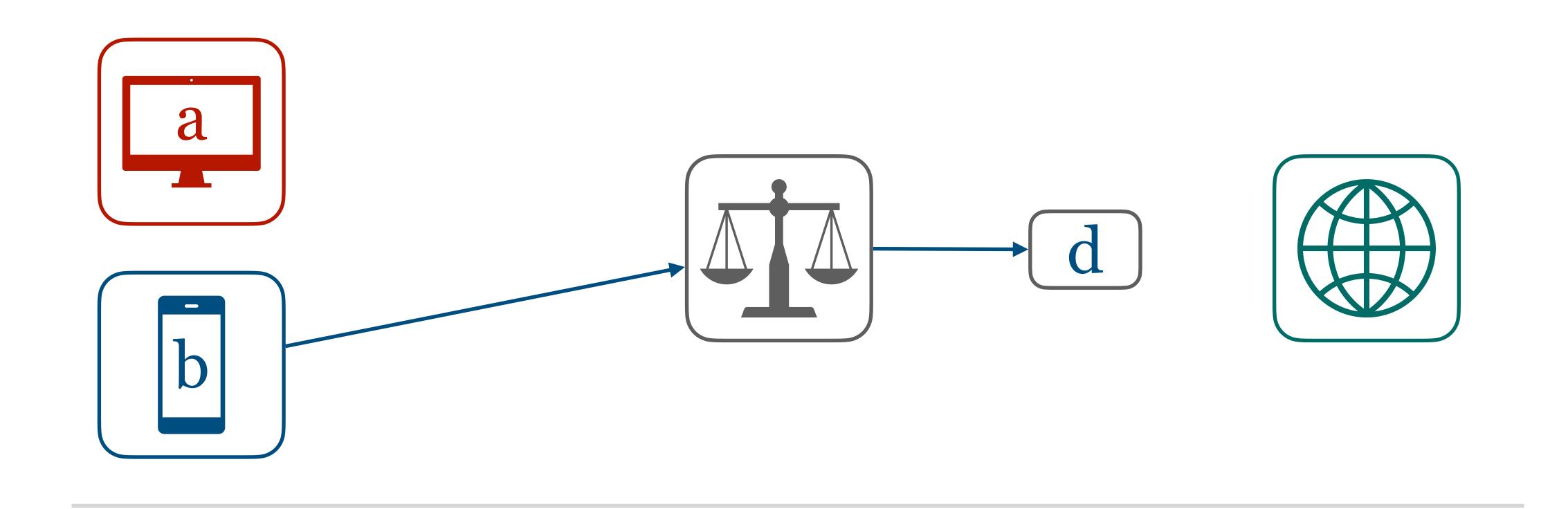
a



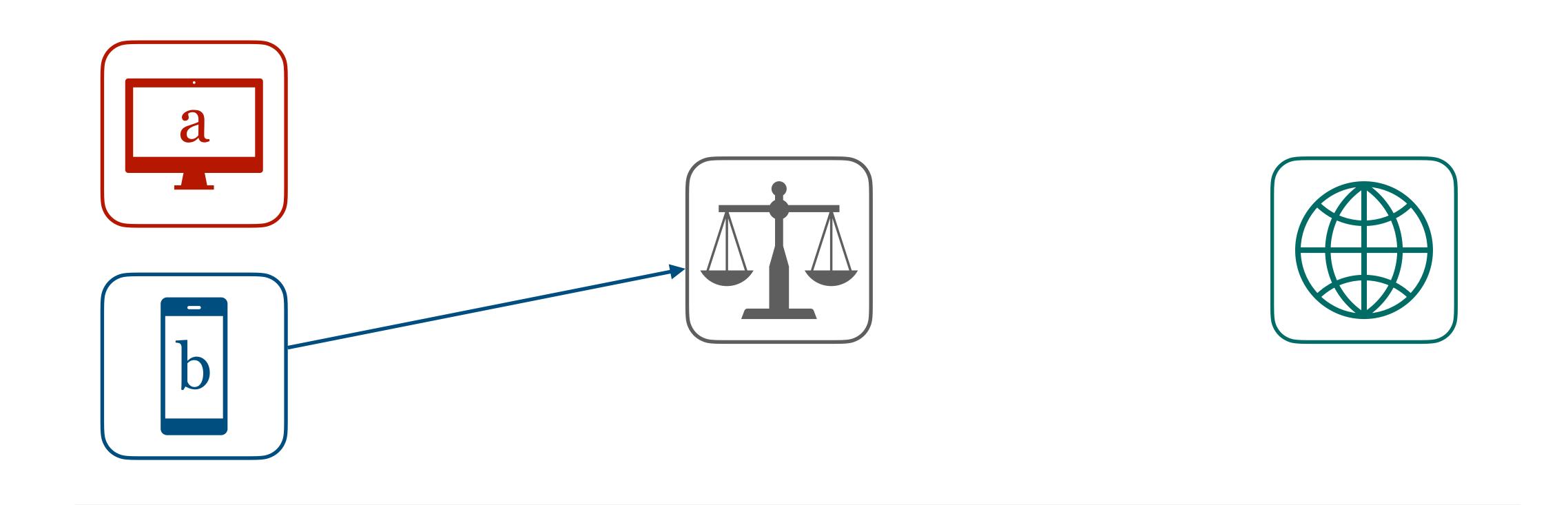
ag



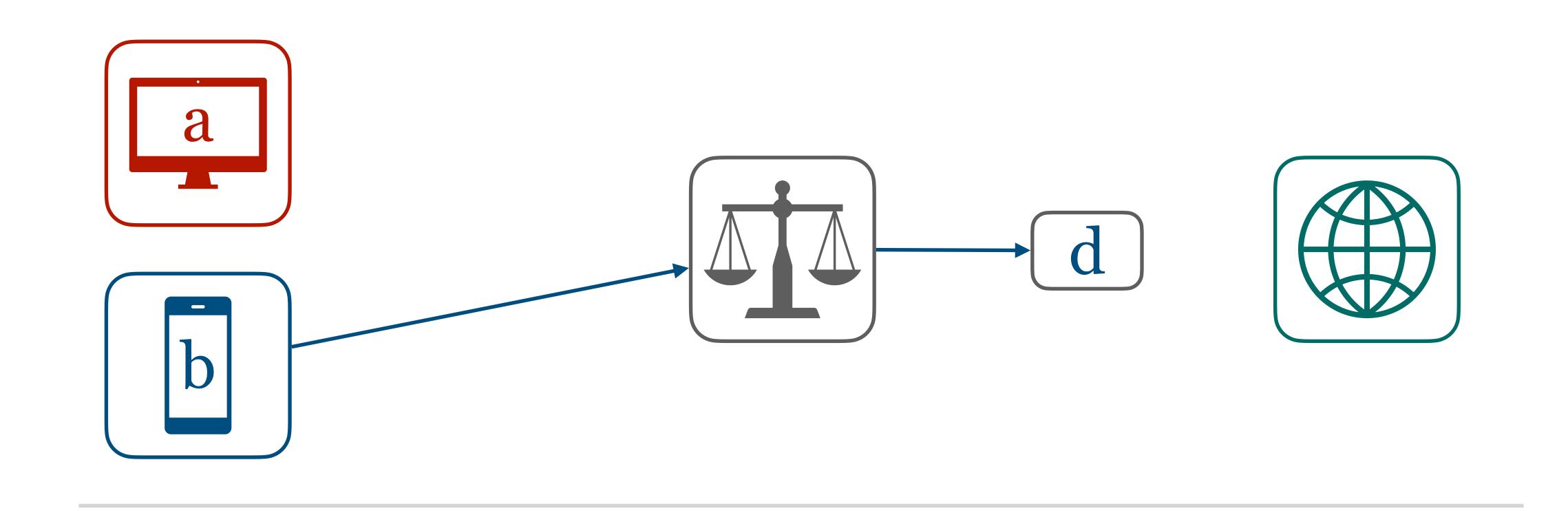
agb



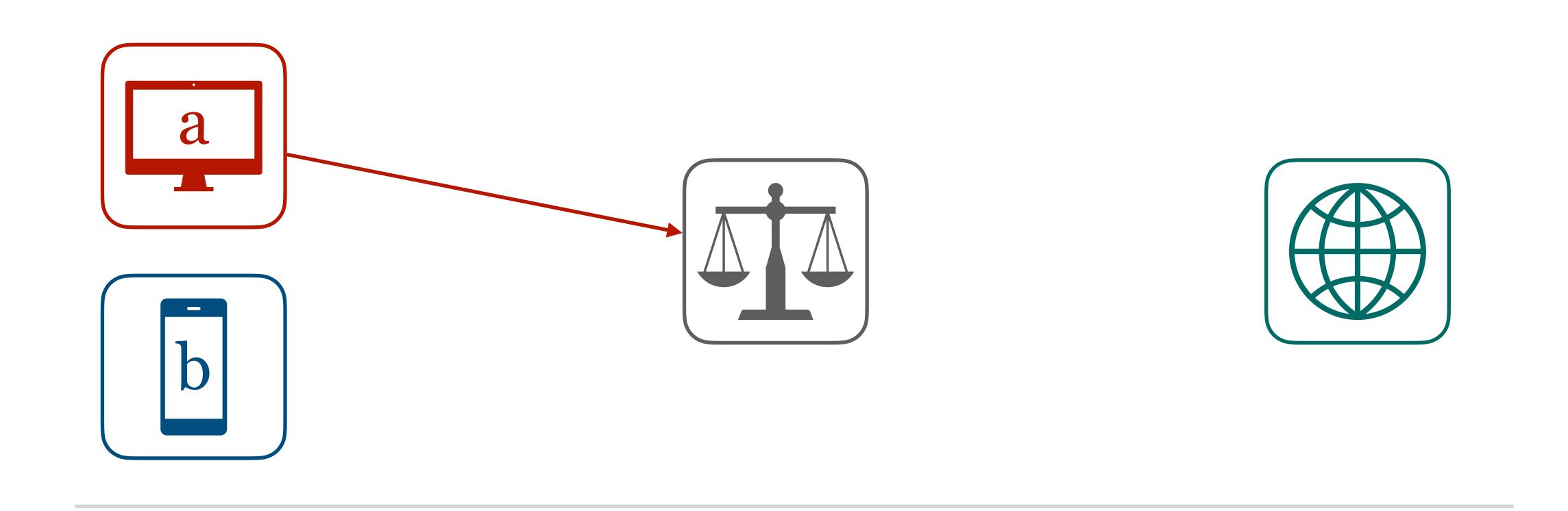
agbd



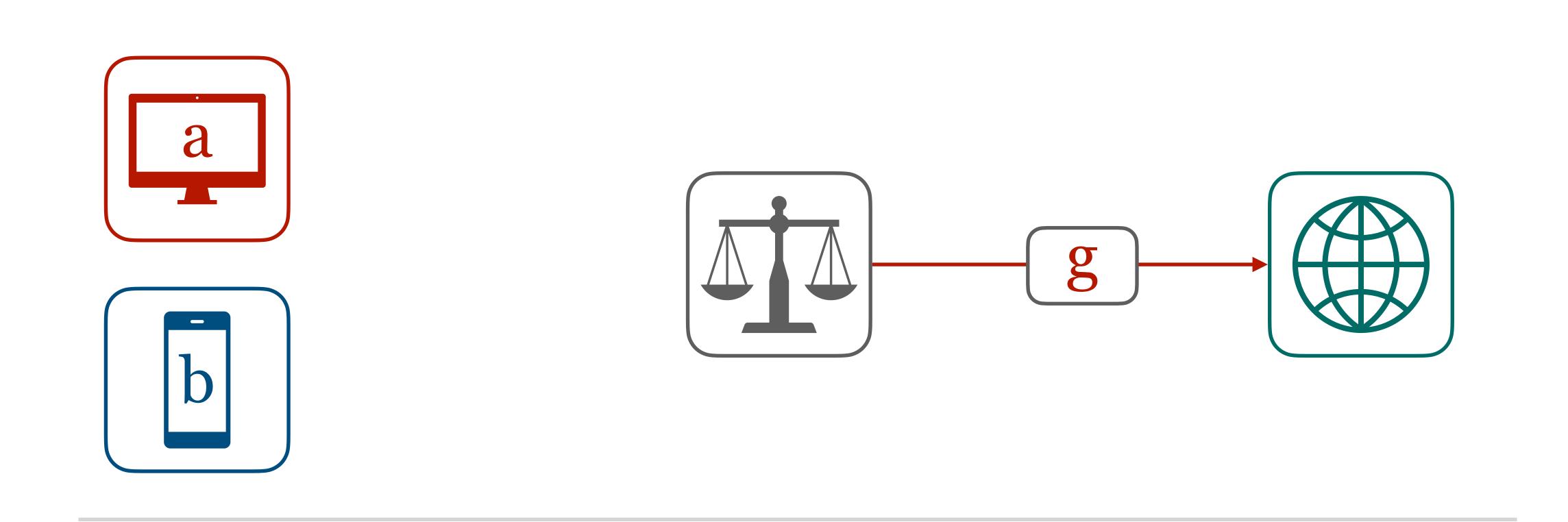
agbdb



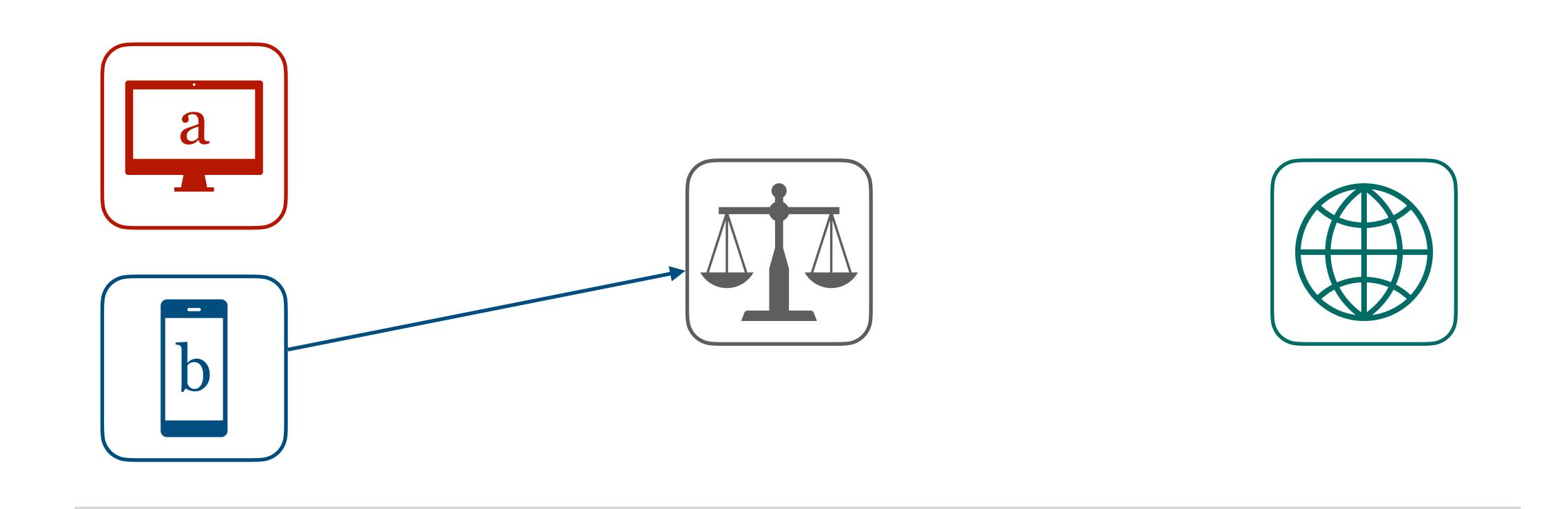
agbdbdbd



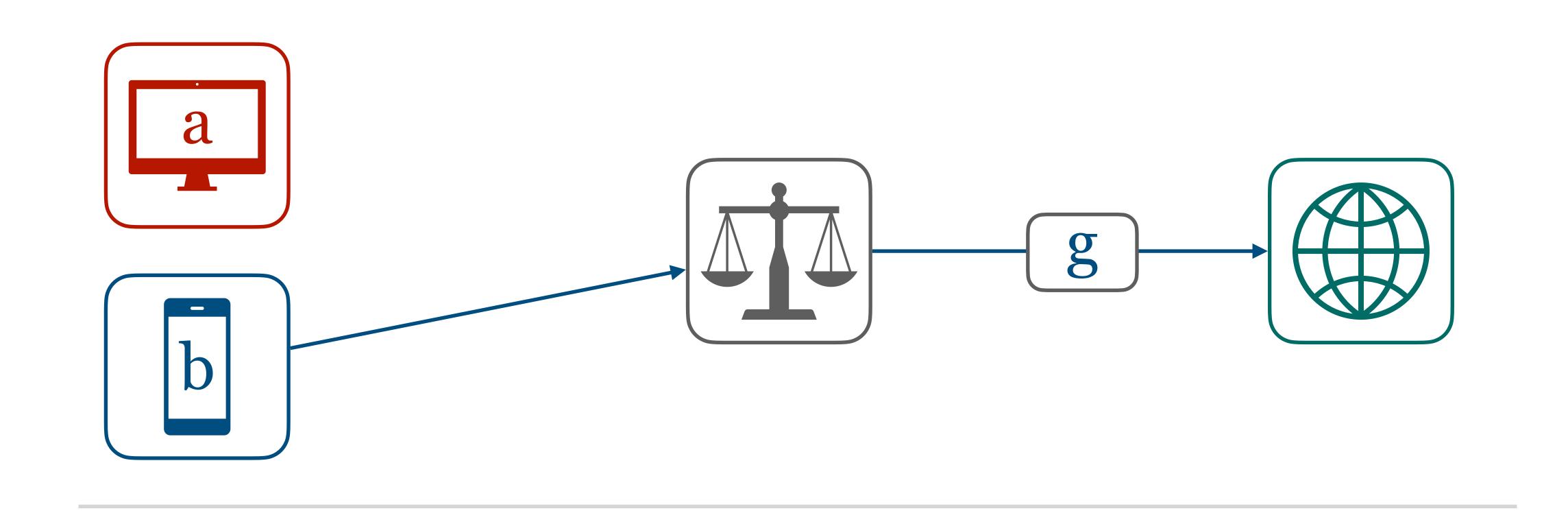
agbdbdbda



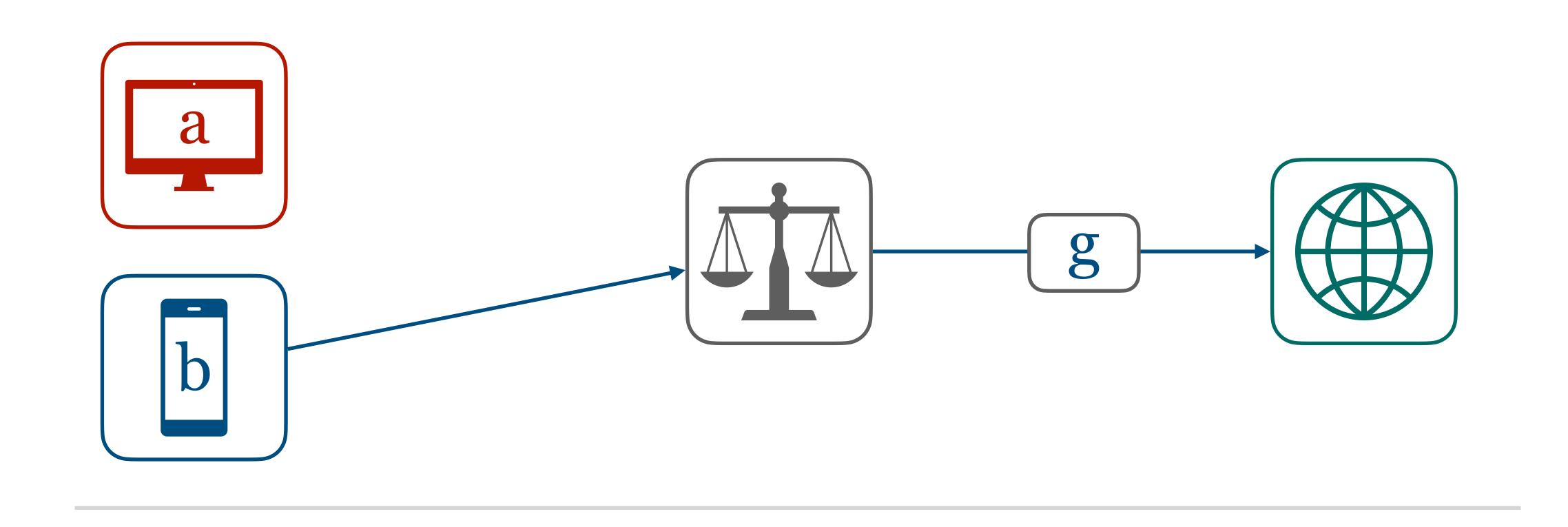
agbdbdbdag



agbdbdagb



agbdbdagbg



$$\varphi \subseteq \Sigma^{\omega}$$

$$\varphi \subseteq \Sigma^{\omega}$$

Monitor

$$\mathscr{A}: \Sigma^* \to \{0,1,?\}$$

$$\varphi \subseteq \Sigma^{\omega}$$

Monitor

$$\mathscr{A}: \Sigma^* \to \{0,1,?\}$$

$$w \in \Sigma^{\omega}, u < w$$
:

$$\varphi \subseteq \Sigma^{\omega}$$

Monitor

$$\mathscr{A}: \Sigma^* \to \{0,1,?\}$$

$$w \in \Sigma^{\omega}, u < w$$
:

$$\mathcal{A}(u) = 0 \Rightarrow w \notin \varphi$$

$$\varphi \subseteq \Sigma^{\omega}$$

Monitor

$$\mathscr{A}: \Sigma^* \to \{0,1,?\}$$

$$w \in \Sigma^{\omega}, u < w$$
:

$$\mathcal{A}(u) = 0 \Rightarrow w \notin \varphi$$

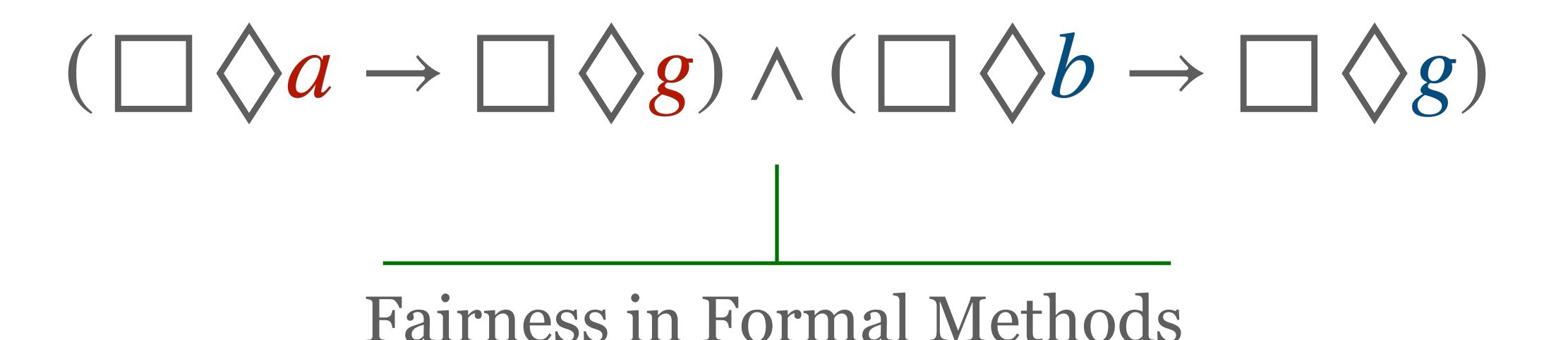
$$\mathcal{A}(u) = 1 \Rightarrow w \in \varphi$$

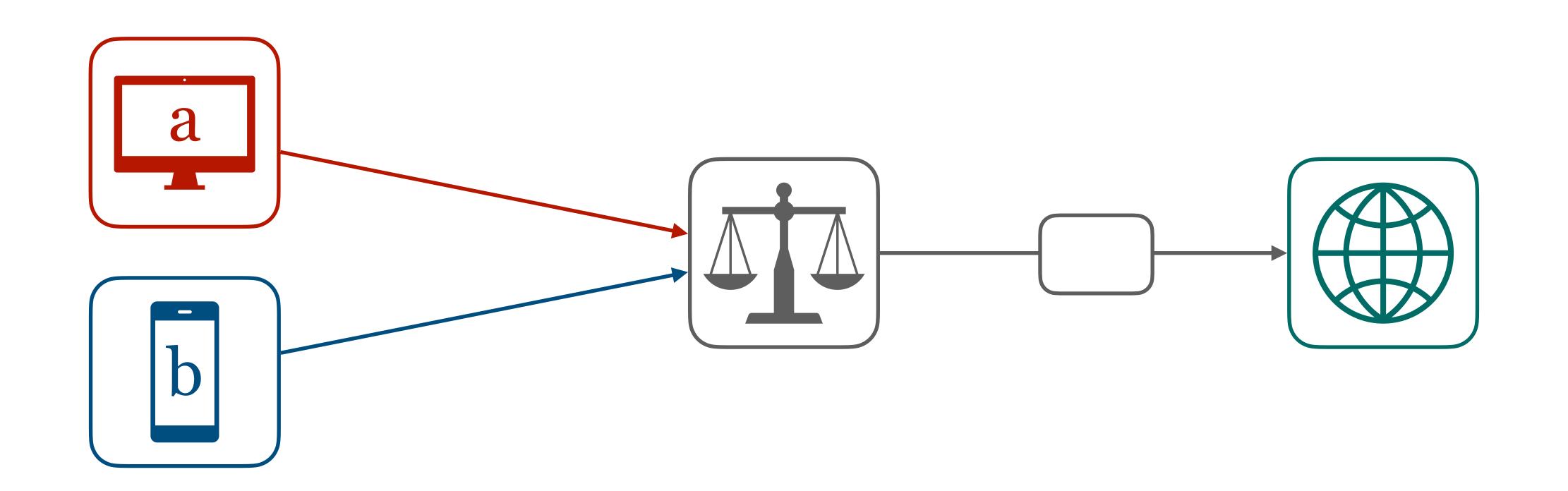
Monitorability.

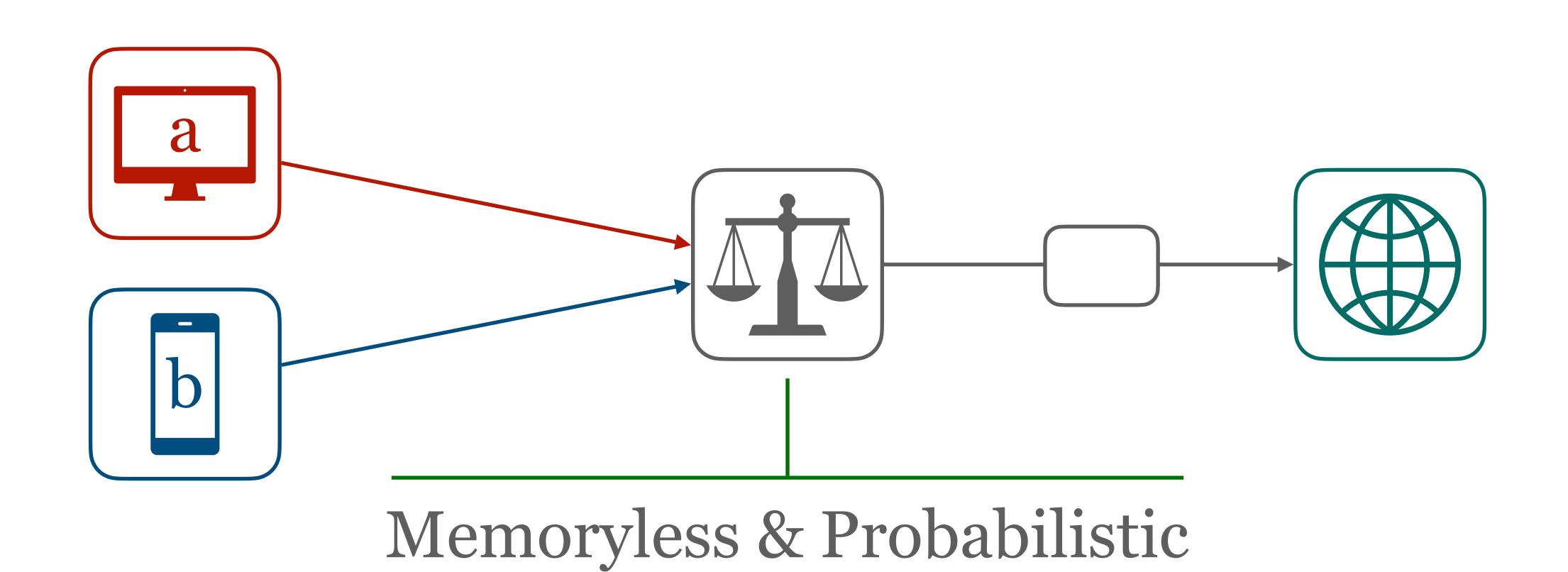
If every infinite string has a point, where the monitor can stop watching.

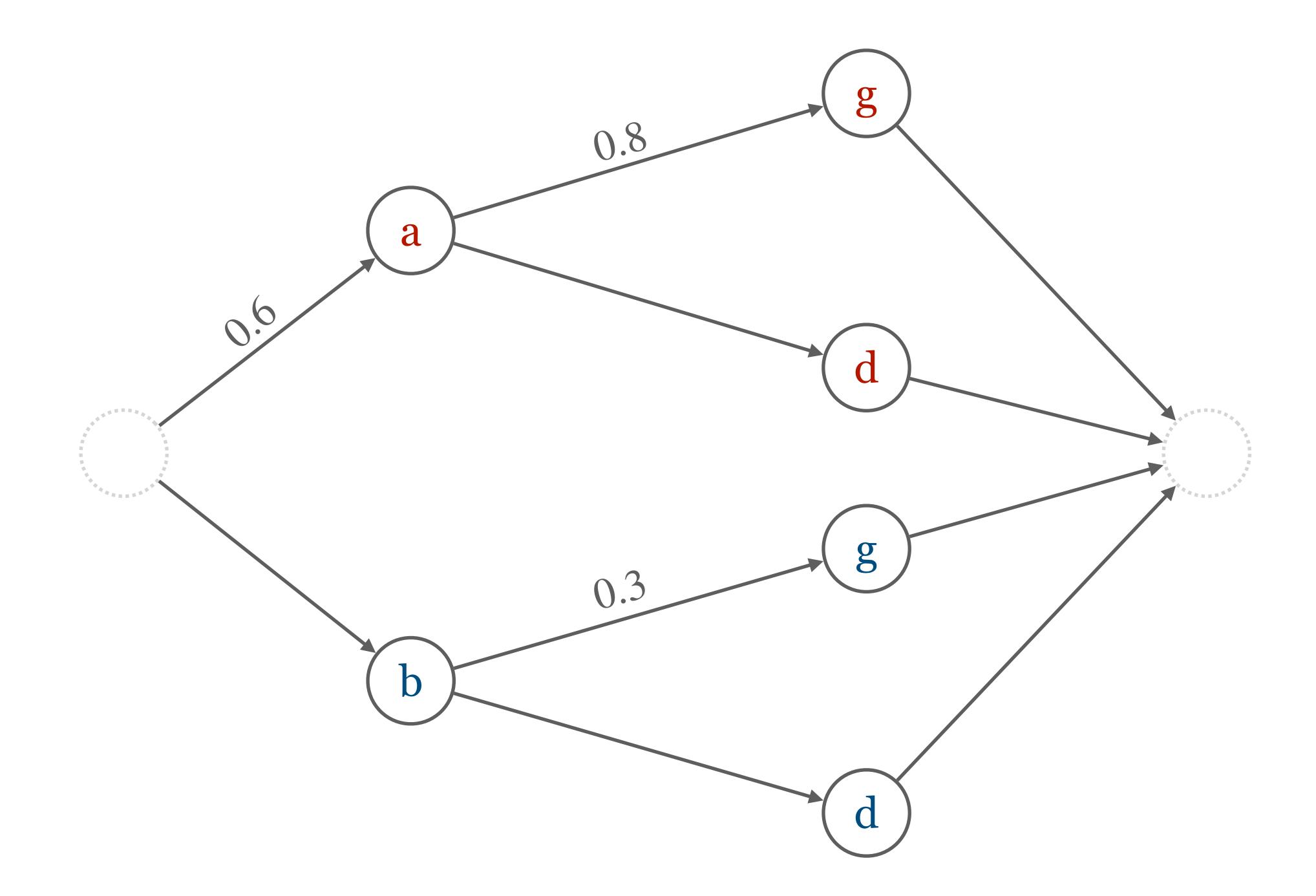
Fairness Properties

From formal methods to machine learning.









$$(\Box \Diamond a \to \Box \Diamond g) \land (\Box \Diamond b \to \Box \Diamond g)$$

$$(\Box \Diamond a \rightarrow \Box \Diamond g) \land (\Box \Diamond b \rightarrow \Box \Diamond g)$$

$$\downarrow$$

$$\mathbb{P}(\mathbf{g} \mid a) > 0 \land \mathbb{P}(\mathbf{g} \mid b) > 0$$

$$(\Box \lozenge a \to \Box \lozenge g) \land (\Box \lozenge b \to \Box \lozenge g)$$

$$\downarrow$$

$$\mathbb{P}(g \mid a) > 0 \land \mathbb{P}(g \mid b) > 0$$

$$\downarrow$$

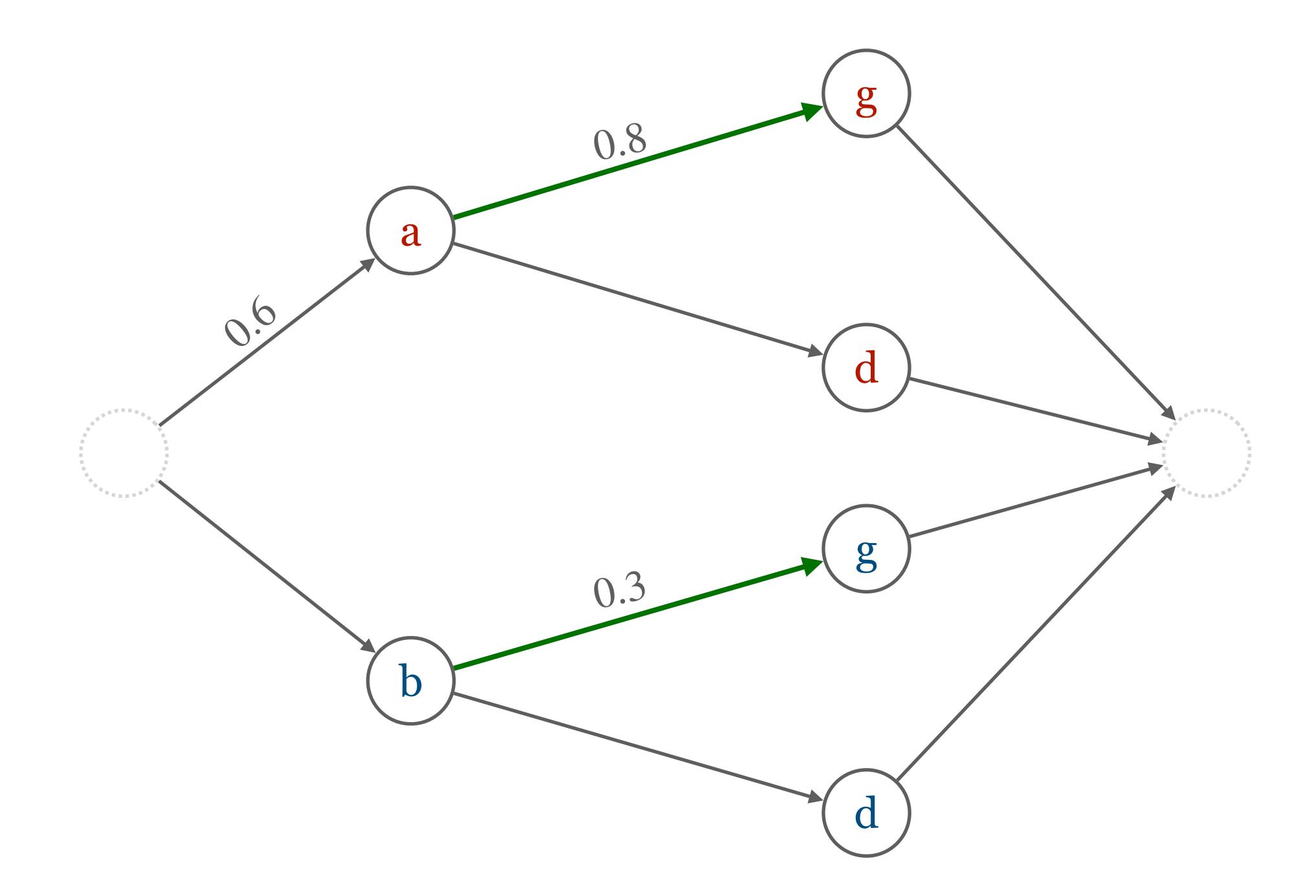
$$\mathbb{P}(g \mid a) - \mathbb{P}(g \mid b)$$

$$\mathbb{P}(g \mid a) - \mathbb{P}(g \mid b)$$

Fairness in Machine Learning

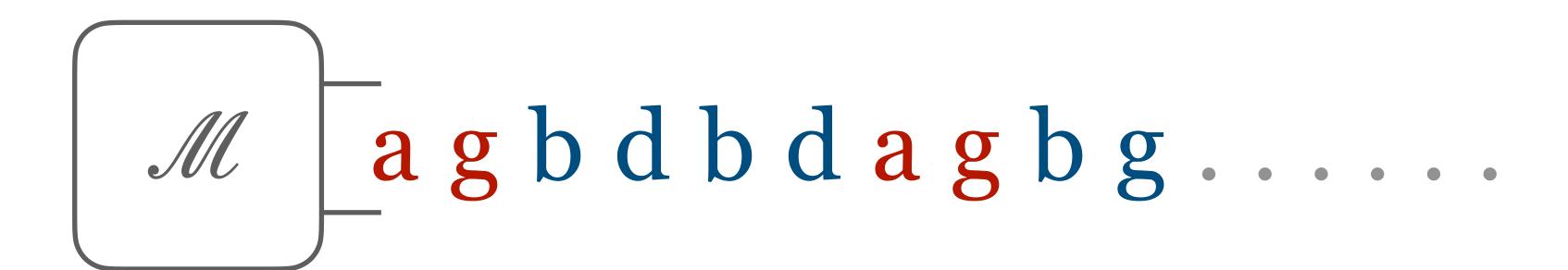
Monitorability.

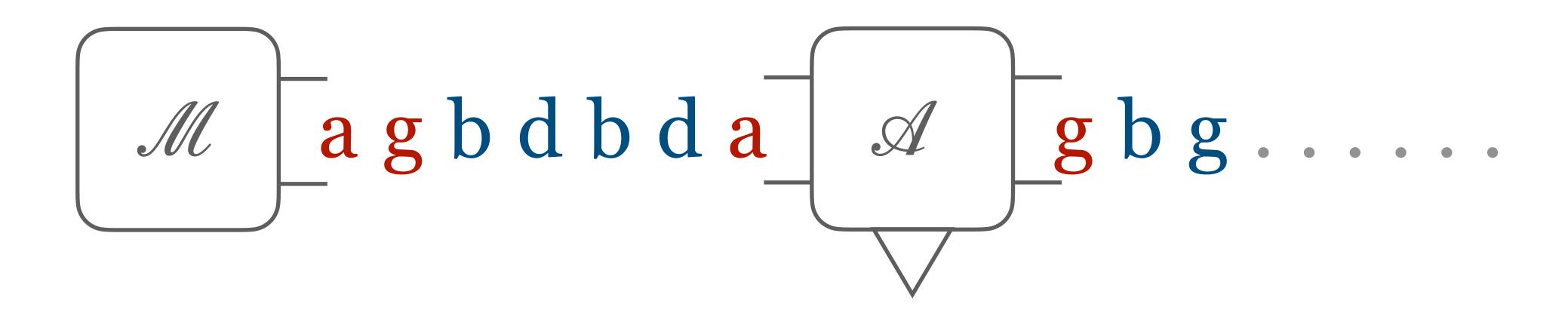
Can we estimate the property from observations?

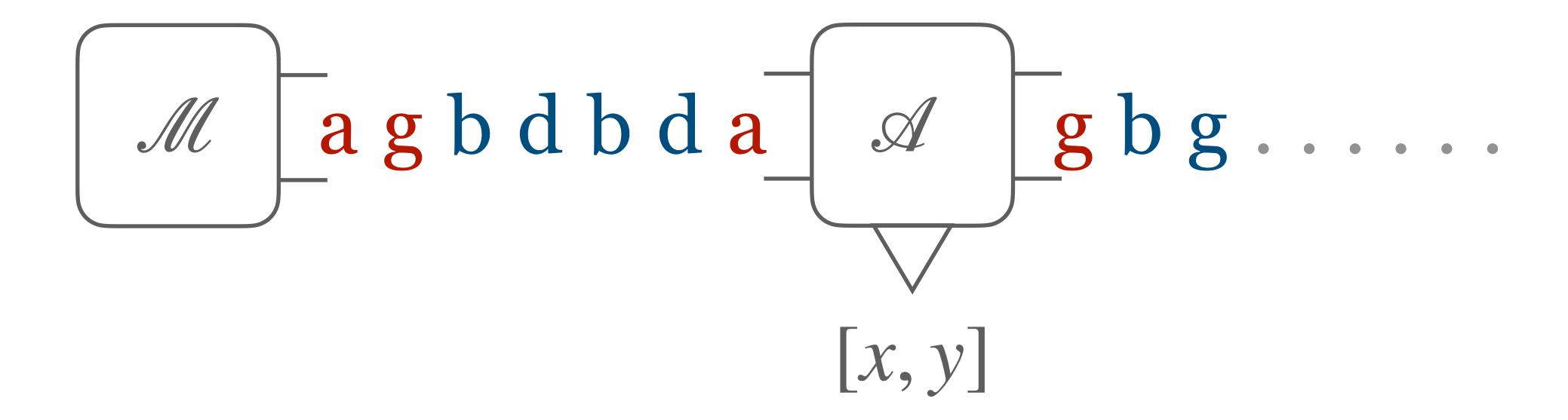


General Idea.

We observe a Markov chain and at every time step the monitor provides PAC-style guarantees.







$$\mathbb{P}(g \mid a) - \mathbb{P}(g \mid b) \in [x, y] \text{ with probability } 1 - \delta$$

$$\mathbb{A} \quad \text{a g b d b d a} \quad \mathbb{A} \quad \text{g b g} \dots \dots$$

$$[x, y]$$

Problem Statement

Let's be slightly more general.

Let $M \in \Delta(N-1)^N$,

Let
$$M \in \Delta(N-1)^N$$
, $W \sim (M, q_0)$

Let $M \in \Delta(N-1)^N$, $W \sim (M, q_0)$ and $U \prec W$.

Let $M \in \Delta(N-1)^N$, $W \sim (M, q_0)$ and $U \prec W$. Given a function $f: \Delta(N-1)^N \to \mathbb{R}$,

Let $M \in \Delta(N-1)^N$, $W \sim (M, q_0)$ and $U \prec W$. Given a function $f: \Delta(N-1)^N \to \mathbb{R}$, find a monitor $\mathscr{A}: [N]^* \to \mathbb{R}^2$ such that:

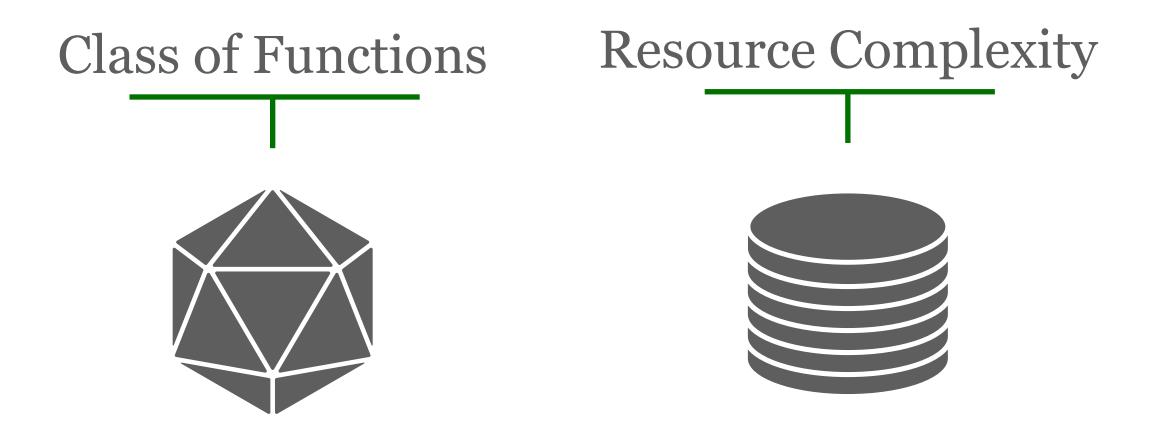
Let $M \in \Delta(N-1)^N$, $W \sim (M, q_0)$ and $U \prec W$. Given a function $f: \Delta(N-1)^N \to \mathbb{R}$, find a monitor $\mathscr{A}: [N]^* \to \mathbb{R}^2$ such that:

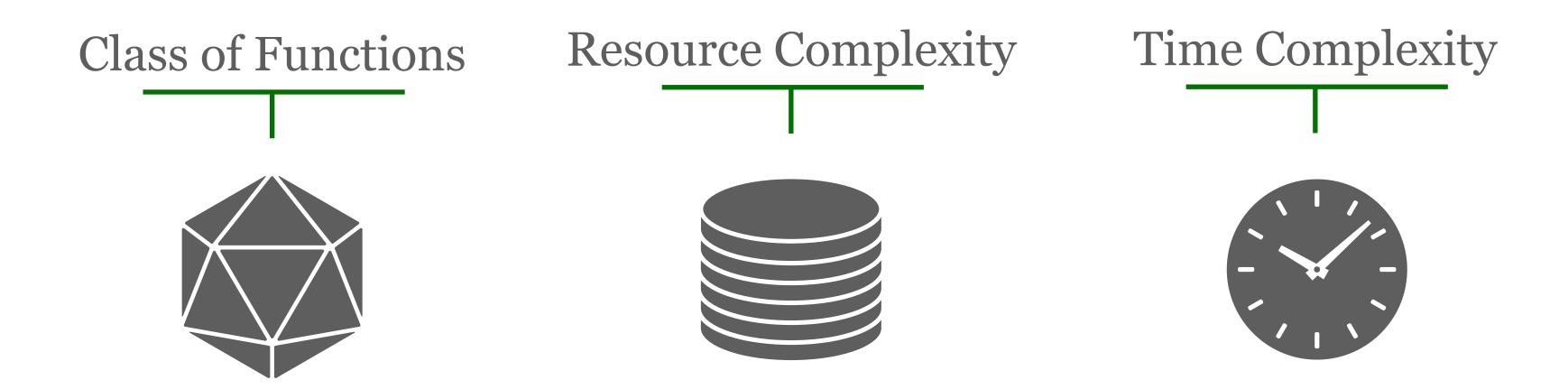
$$\mathbb{P}(f(M) \in \mathcal{A}(U)) \ge 1 - \delta$$

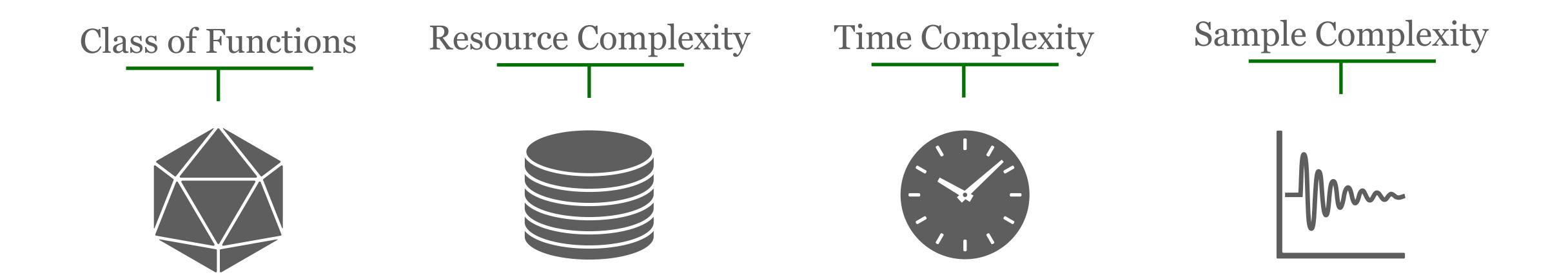
(Obviously we want the bounds to be as tight as possible.)

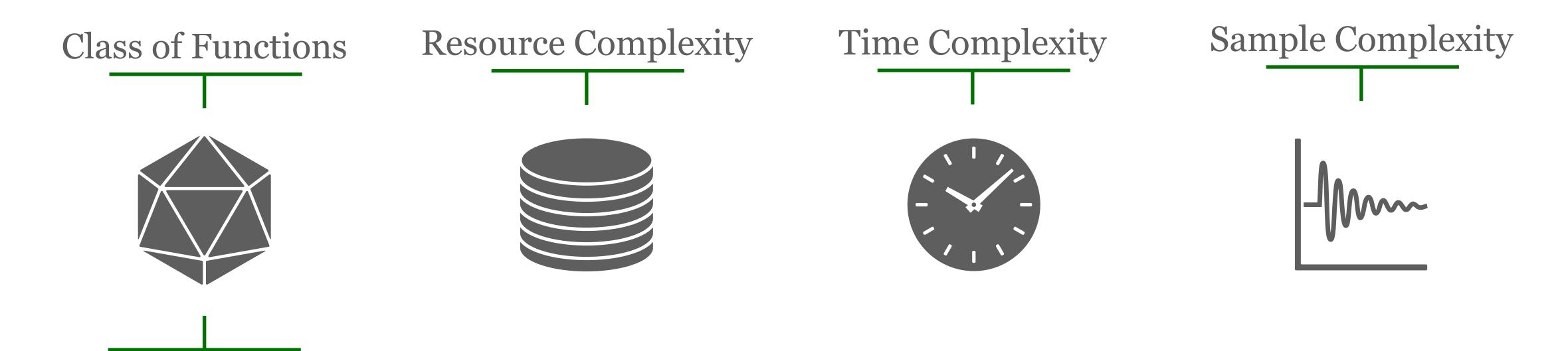
Tradeoffs.

We want to map the problem across four dimensions

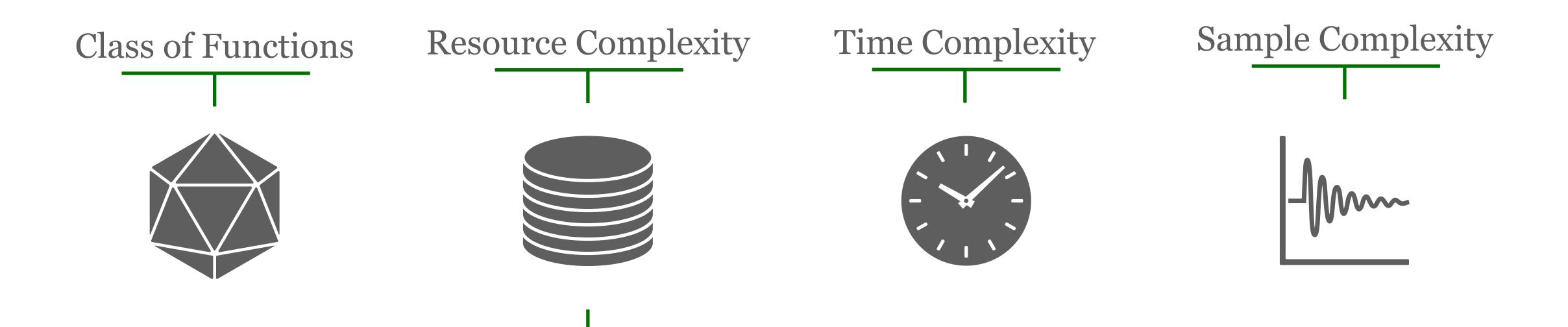




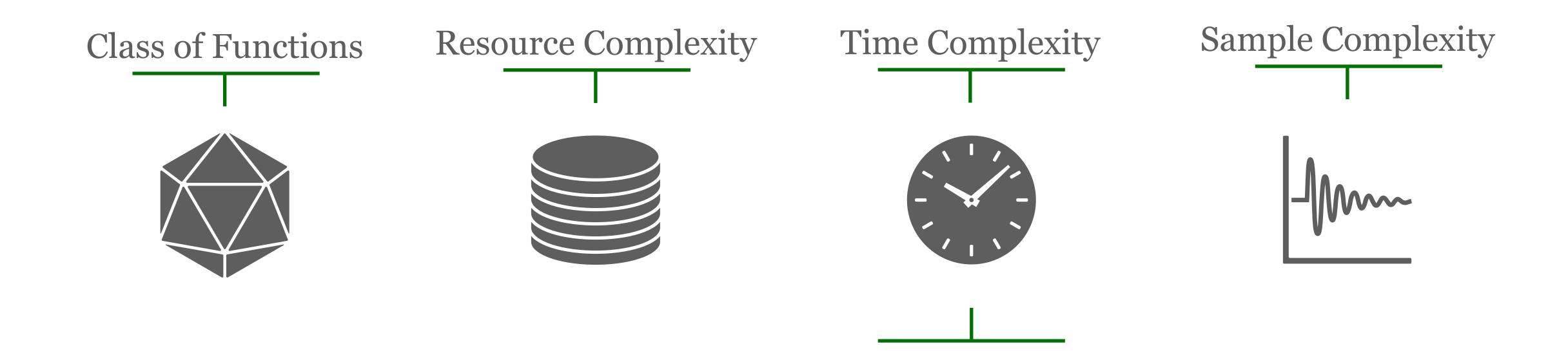




How does the class of functions influence the complexities, e.g. (in)dependent sums over M, polynomials over M (and/or the eigenvector of M).

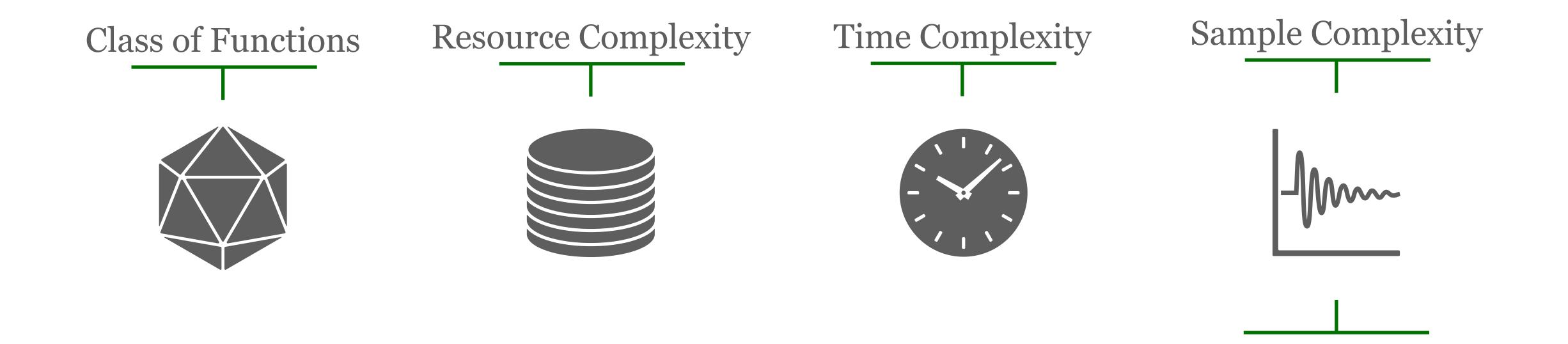


What is the minimal number of registers? (w.r.t. time/sample complexity)



What is the minimal computation time?

(w.r.t. resource/sample complexity)

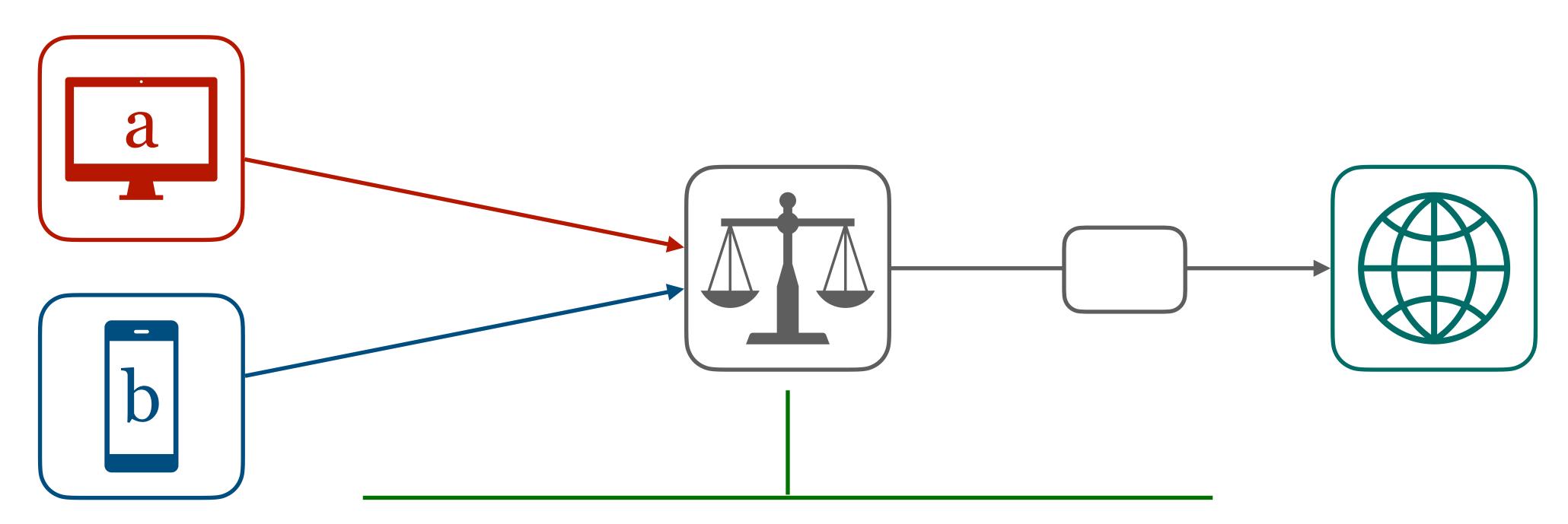


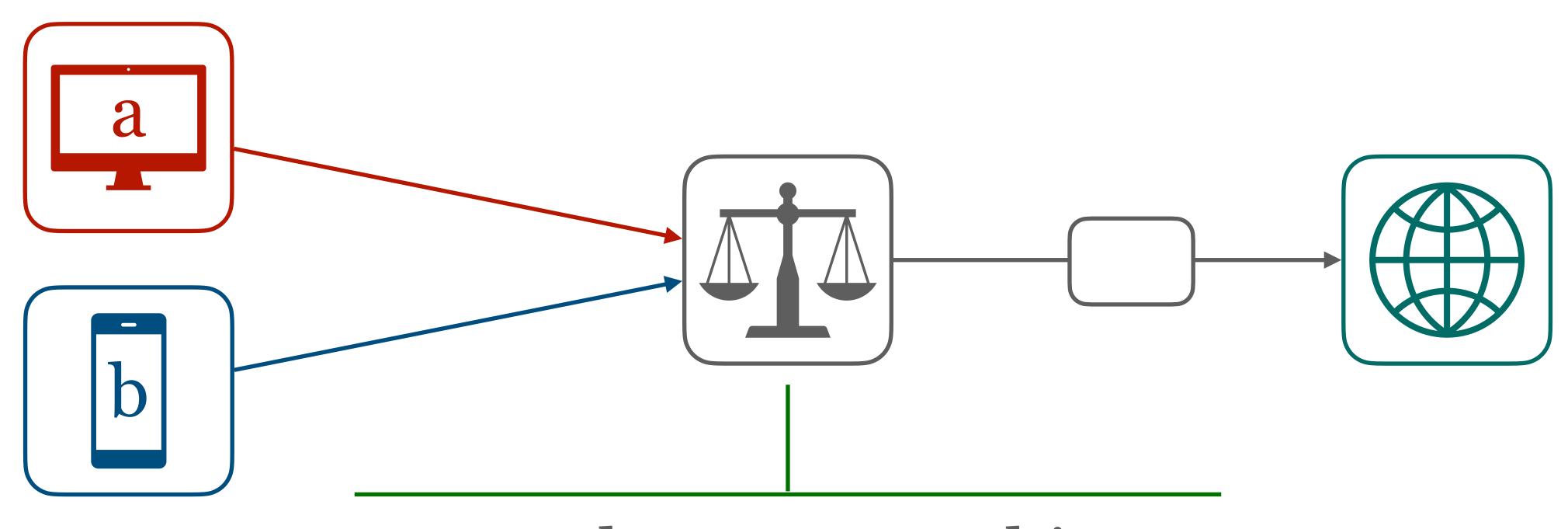
(w.r.t. resource/time complexity)

What is the rate at which the interval shrinks?

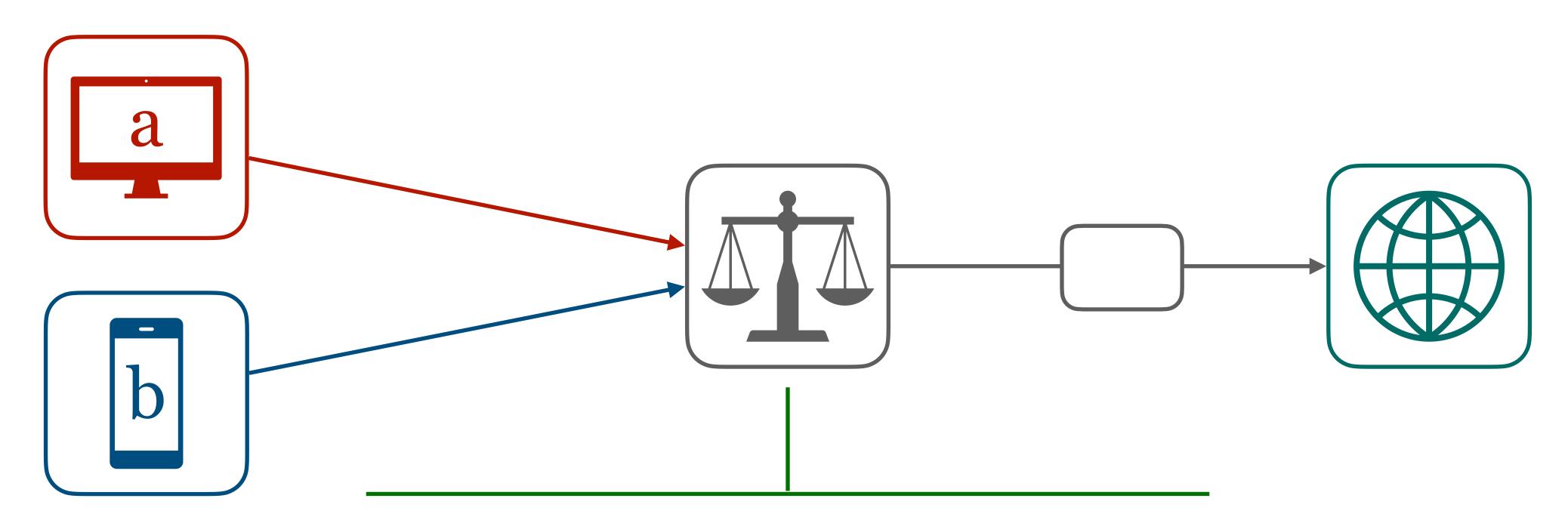
But wait, there is more.

What if the system is more complex?

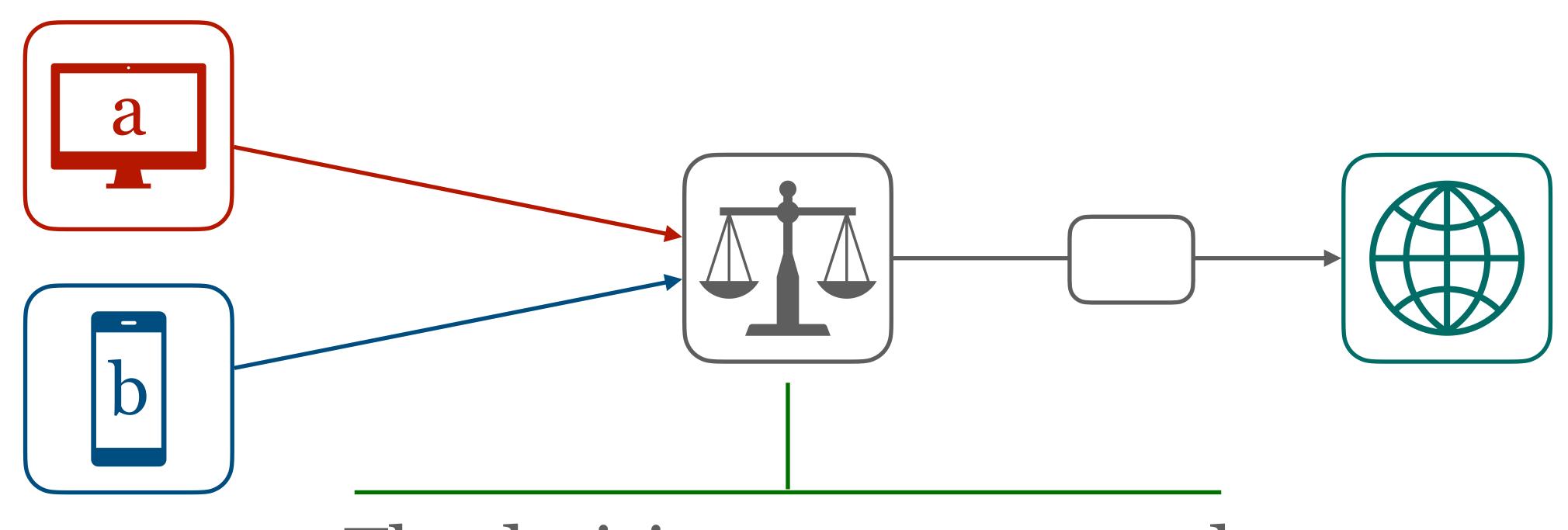




Remembers some arbitrary k-decisions.



The policy changes at each time step, in a <u>deterministic</u> or <u>probabilistic</u> manner.



The decisions are <u>corrupted</u> or partially <u>hidden</u>.

And many more.

From our perspective there is a lot we don't know.
It seems closely related to the concentration of
functions over random variables
with various dependencies.

What we did...

... so far.

(Almost) arbitrary arithmetic expressions over transition probabilities of Markov chains.

(Almost) arbitrary arithmetic expressions over transition probabilities of Markov chains.

Efficient computation of *expectation* of arbitrary *polynomials* over *transition probabilities* of Markov chains in a *Bayesian* setting using a Dirichlet prior.

(Almost) arbitrary arithmetic expressions over transition probabilities of Markov chains.

Efficient computation of *expectation* of arbitrary *polynomials* over *transition probabilities* of Markov chains in a *Bayesian* setting using a Dirichlet prior.

Weighted sums over transition probabilities of time-inhomogeneous Markov chains with linear and observed change in transition probabilities.

Is this interesting to you?

Let us know! (^_ ^)