Abstraction-Based
Decision Making

for Statistical Properties.

F. Cano | TA. Henzinger | B. Konighoter | K. Kueffner | K. Mallik




Motivation.

Algorithmic Fairness.


















When to hire?

Decide on the spot.
To maxamise reward and
ensure fairness.
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At that time...

...novel algorithmic fairness
property/problem.
(Alamdari 2024)
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Familhar Problem?

Prophet Inequality.
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Objective
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Problem
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Not Covered...

...by exasting works:
dependent distributions and complex constraint.
(Kleinberg 2019)
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Formal Problem.

What are we looking at?
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States

0: (I XY - ML)

Enuvironment
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Actions

0: (X XY)* - AL

Enuvironment
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T (X XY XTI X —> A(Y)

Policy



XY — (Xt’ Yt)t>0

Stochastic process

28



Xt ™~ H(X_Y)t—l)

Stochastic process
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Yt i ﬂ'(XYt_l,Xt)

Stochastic process
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rew . (X X Y)*
— R

Re
ward
fun
ction
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COST :
(XX Y)*
— {0,1}

Co
st function
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Problem Statement:

Given the problem instance (X, Y, 0, rew, cost, N).
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Problem Statement:

Given the problem instance (X, Y, 0, rew, cost, N).
Find a policy that, maxamises the reward and

ensure that the cost is 1
at time N.
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Y . = {x] P]gfﬂ(cost) =1}

cost ¢

All policies that guarantee
that costis 1 at ime N
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N

arg max [t H,ﬂ(rew)

rel™

Find reward maximising feasible policy



Example.

Cown toss.
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Reward function:
Number of accepted tosses
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Cost function:
Balanced total acceptance
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Algorithm.

Dynarmuic programming.
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Step 1.

Compute cost and reward.
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Step 2.

Compute max.
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Step 3.

Compute expectation.
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Step 4.

Repeat.
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Complexity

PSPACE-hard.
(Papadimitriou 1985)
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Observation.

The cost function is not really a function
over the entire history.




Statistic.

Is there a smaller representation of the history?

o7/
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Statistic:
Difference between accepted H and T



H T H T H

SIS IS8

- -
T H T
ogo1o&
® ®

59



H T H T H

SIS IS8

- -
T H T
ogo1o&
® ®

60



IS1819)¢ 2 &

é

61



= 0
0
/‘\v‘o/vmw
= >0
>0
=0
/‘o/vO
9










Now reduce...

...by collapsing equivalent states.
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Statistical Properties.

Let's be more general.
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U w*->3

Statistic
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Well-Behaved.

Abstract the history.
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Yu,v, w € W'*
u@) =pu@v) = puw)=u@ww)

Well-behaved
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N N
Y X - (1-X)
=1 =1

Absolute Balance

/o



100 2% 1

110 2% 1



1001 24 0

1101 24 2

/7



10 2% 1/2

0101 =% 1/2



1011 ¢ 3/4

010111 =% 2/3
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Statistical Abstraction.

What do we gain?
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Complexity

If 6, rew, cost are u-representable

381



Representability.

The functionf : 7/ * — 7 is u-representable.
if thereexists f 1 & — U s.t. for every
w E W*,f(w) = fu(w)).
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Complexity

If 6, rew, cost are u-representable then
Werequire O(| X | - | Y| - Zﬁi size (1)) time
to solve the problem.



Size of a Statistic.

Forevery t > 0 the statistic u
induces an equivalence relation over W'
The size of the statistic s1ze ﬂ(t) 1S
the number of equivalence classes at timet.




Example.

Acceptance rate H vs. T.



S [x,=H]-d XM[x,=T]-d,

Balanced acceptance rate

<

E
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>M[x; = H] - d.
>Mx; =T] - d
>M[x; = H]

Statistic




O(N*)

Complexity
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Specification?
How can we obtain a statistic for a function?
Easy.. .af its specified by a
counter automaton.



Cou
nter Automat
a.

DFA
+ cou
nters + outp
ut fun
ction
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Example.

Cont.

01



(H,1) : T7:

Start ——
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. N+ T
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Output Function
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CA to Statistic

u(w)=(state, counters) ofthe CAon w, thus
sizeﬂ(t) < #fstates - #counters - .

95



Algorithm.

If problem specified by a CA then
we have a poly-time algorithm

in the size of the horizon and the CA.



Ready to solve...

... the fairness problem.
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