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What we diq:

Proposed a monitor for estimating such properties
over a restricted class of Hidden Markov Models.
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Example.

A stimple resource allocation problem.
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Is the arbiter “fair”.

Many possible interpretations.
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Ok. Let'stry to ...

... give meaming to those probabilities.
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How farrisit...

at time t?
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How farrisit...

on average?
(up to time t)
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How farrisit...

on average?
(in the mat.)
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Static Properties

The “classic” perspective.
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Dynamic Properties

The runtime perspective.
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How farrisit...

at this very moment?
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How fair was Iit...

in the past on average?
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Properties.

Let's be a little bit more general.
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Arithmetic Expressions over:
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| kKnow...a bit ironic.

For more on dynamic properties see:
Runtime Monitoring of Dynamic Fairness Properties (FAccT23)
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System.

What assumptions do we make?
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We assume...

... the systemis a
stationary, aperiodic, irreducible, labelled

Markov chain with known mang time 7, ;..




Labelled Markov chain.

Markov chain where states
deternunistically map to observables.
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Irreducible.

The underlying graph is
a strongly connected component.
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Aperiodic.

You can return to the same state in (almost)
arbitrary number of steps.
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Stationarity.

...the distribution over states
does not change.
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Mixing Time.

Any irreducible, aperiodic Markov chain
eventually reaches its stationary distribution.
This time 1s the mixing time.
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Stationarity?

What do we gain?
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Mixing Time?
What do we gain?
To be continued.
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Problem.

What do we trying to do?
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Algorithm.

A sketch.
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E(A(X,) = fil)

Unbiased
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X, and X; differ only in position i
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Lipschitz continuous
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McDiarnud's inequality for MCs
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Result can easily be
extended to...

... arithmetic expressions over
expected values of atomic functions
using union bound and interval arithmetic.
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Mixing Time?

Because of Dependency.
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You don’t know...

...when you have seen all behaviour
you need to see.
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Experiments.

3D-Hypercube (1.e. a cube).

D’Amour et al. 2020. Fairness is not static: deeper understanding of long term fairness via simulation studies 10 6
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Related Work.

What has been done so far?
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Summary.

Main points.
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Interested in monitoring “distributional” properties,
e.g. conditional expectation, of stochastic processes.

Proposed a monitor for estimating such properties
over a restricted class of Hidden Markov Models.

Leverage tools from non-asymptotic statistics to
provide valid guarantees for each time step.

We focused on monitoring Algorithmic Fairness,
but those techniques have wide applicability.
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